Journal of NeuroVirology

, Volume 19, Issue 1, pp 10–23 | Cite as

Patterns of white matter injury in HIV infection after partial immune reconstitution: a DTI tract-based spatial statistics study

  • Tong Zhu
  • Jianhui Zhong
  • Rui Hu
  • Madalina Tivarus
  • Sven Ekholm
  • Jaroslaw Harezlak
  • Hernando Ombao
  • Bradford Navia
  • Ron Cohen
  • Giovanni Schifitto
Article

Abstract

HIV-infected individuals with severe immune suppression are more likely to develop HIV-associated neurocognitive disorders than those with preserved immune function. While partial immune reconstitution occurs in those with severe immune suppression after starting combined antiretroviral therapy, it is not established whether improvement in immune function reverses or prevents injury to the central nervous system (CNS). To address this question, 50 participants (nadir CD4 counts ≤200 cells/mm3, on a stable antiretroviral regimen for at least 12 consecutive weeks prior to study) and 13 HIV negative participants underwent a comprehensive neurological evaluation followed by diffusion tensor imaging (DTI). Eighty-four percent of the 50 HIV participants were neurologically asymptomatic (HIVNA) and 16 % had mild cognitive impairment (HIVCI). Tract-based spatial statistics (TBSS) on DTI data revealed that mean diffusivity (MD) increased significantly in the posterior aspect of both hemispheres in HIVNA compared to controls. In HIVCI, compared to controls and HIVNA, increased MD extended to prefrontal areas. Fractional anisotropy decreased only in HIVCI, compared to either controls or HIVNA. Furthermore, DTI showed significant correlations to duration of HIV infection and significant associations with multiple cognitive domains. This study highlights that in partial immune reconstitution, injury to the CNS is present even in those that are neurologically asymptomatic and there are discrete spatial patterns of white matter injury in HIVNA subjects compared to HIVCI subjects. Our results also show that quantitative analysis of DTI using TBSS is a sensitive approach to evaluate HIV-associated white matter disease and thus valuable in monitoring central nervous system injury.

Keywords

Diffusion tensor imaging HIV infection White matter injury Cognitive impairment 

Notes

Acknowledgments

The project described in this publication was supported by NS036524 and the University of Rochester CTSA award number UL1 RR024160 from the National Center for Research Resources and the National Center for Advancing Translational Sciences of the National Institutes of Health. The authors appreciate useful discussions with Dr. Wei Tian of the Department of Imaging Sciences at the University of Rochester.

References

  1. Agosta F, Pievani M, Sala S, Geroldi C, Galluzzi S, Frisoni GB, Filippi M (2011) White matter damage in Alzheimer disease and its relationship to gray matter atrophy. Radiology 258:853–863PubMedCrossRefGoogle Scholar
  2. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Giesslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799PubMedCrossRefGoogle Scholar
  3. Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154:816–829Google Scholar
  4. Benedict RH, Zivadinov R (2011) Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat Rev Neurol 7:332–342PubMedCrossRefGoogle Scholar
  5. Budka H, Constanzi G, Cristina S, Lechi A, Parravicini C, Trabattoni R, Vago L (1987) Brain pathology induced by infection with the human immunodeficiency virus (HIV). A histological, immunocytochemical, and electron microscopical study of 100 autopsy cases. Acta Neuropathol 75:185–198PubMedCrossRefGoogle Scholar
  6. Budka H, Wiley CA, Kleihues P, Artigas J, Asbury AK, Cho ES, Cornblath DR, Dal Canto MC, DeGirolami U, Dickson D (1991) HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain Pathol 1:143–152PubMedCrossRefGoogle Scholar
  7. Chang L, Wong V, Nakama H, Watters M, Ramones D, Miller EN, Cloak C, Ernst T (2008) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J Neuroimmune Pharmacol 3:265–274PubMedCrossRefGoogle Scholar
  8. Chen YS, An HY, Zhu HT, Stone T, Smith JK, Hall C, Bullitt E, Shen D, Lin W (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage 47:1154–1162PubMedCrossRefGoogle Scholar
  9. Clifford DB, McArthur JC, Schifitto G, Kleburtz K, McDermott MP, Letendre S, Cohen BA, Marder K, Ellis RJ, Marra CM, Neurologic AIDS Research Consortium (2002) A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology 59:1568–1573PubMedCrossRefGoogle Scholar
  10. Cloak CC, Chang L, Ernst T (2004) Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. J Neuroimmunol 157:147–152PubMedCrossRefGoogle Scholar
  11. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R, Taylor M, Thompson P, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B (2010a) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32PubMedCrossRefGoogle Scholar
  12. Cohen RA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B, HIV Neuroimaging Consortium (2010b) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16:435–444PubMedGoogle Scholar
  13. Della Nave R, Ginestroni A, Diciotti S, Salvatore E, Soricelli A, Mascalchi M (2011) Axial diffusivity is increased in the degenerating superior cerebellar peduncles of Friedreich’s ataxia. Neuroradiology 53:367–372PubMedCrossRefGoogle Scholar
  14. Dougherty RF, Ben-Shachar M, Deutsch GK, Hernandez A, Fox GR, Wandell BA (2007) Temporal–callosal pathway diffusivity predicts phonological skills in children. PNAS 104:8556–8561PubMedCrossRefGoogle Scholar
  15. Duffau H (2008) The anatomo-functional connectivity of language revisited new insights provided by electrostimulation and tractography. Neuropsychologia 46:927–934PubMedCrossRefGoogle Scholar
  16. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 22:277–283PubMedGoogle Scholar
  17. Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, Gherardi R (1992) Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol 51:177–185PubMedCrossRefGoogle Scholar
  18. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Darr E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B, HIV Neuroimaging Consortium (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633PubMedCrossRefGoogle Scholar
  19. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, Ellis RJ, Letendre SL, Marcotte TD, Atkinson JH, Rivera-Mindt M, Vigil OR, Taylor MJ, Collier AC, Marra CM, Gelman BB, McArthur JC, Morgello S, Simpson DM, McCutchan JA, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, CHARTER Group (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096PubMedCrossRefGoogle Scholar
  20. Jokinen H, Gouw AA, Madureira S, Yikoski R, van Straaten EC, van der Flier WM, Barkhof F, Scheltens P, Fazekas F, Schmidt R, Verdelho A, Ferro JM, Pantoni L, Inzitari D, Erkinjuntti T, LADIS Study Group (2011) Incident lacunes influence cognitive decline: the LADIS study. Neurology 76:1872–1878PubMedCrossRefGoogle Scholar
  21. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas C, Rainey L, Kochunov PV, Nickerson D, Mikiten PA, Fox PT (2000) Automated Talairach Atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131PubMedCrossRefGoogle Scholar
  22. Le Bihan DMJ, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imag 13:534–546CrossRefGoogle Scholar
  23. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Morgello S, Simpson D, Grant I, Ellis RJ (2008) Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol 65:65–70PubMedCrossRefGoogle Scholar
  24. MacDonald CL, Dikranian K, Bayly P, Holtzman D, Brody D (2007) Detects experimental traumatic axonal injury and indicates approximate time of injury. J Neurosci 27:11869–11876CrossRefGoogle Scholar
  25. Mandonnet E, Nouet A, Gatignol P, Cappelle L, Duffau H (2007) Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain 130:623–629PubMedCrossRefGoogle Scholar
  26. Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000) Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14:69–74PubMedCrossRefGoogle Scholar
  27. McArthur JC, McDermott MP, McClernon D, St Hillaire C, Conant K, Marder K, Schifitto G, Selnes OA, Sacktor N, Stern Y, Albert SM, Kleburtz K, de Marcalda JA, Cohen RA, Epstein LG (2004) Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. [erratum appears in Arch Neurol (2005) 62:1110]. Arch Neurol 61:1687–1696PubMedCrossRefGoogle Scholar
  28. Metwalli NS, Benatar M, Nair G, Usher S, Hu XP, Carew JD (2010) Utility of axial and radial diffusivity from diffusion tensor MRI as markers of neurodegeneration in amyotrophic lateral sclerosis. Brain Res 1348:156–164PubMedCrossRefGoogle Scholar
  29. Mori S, Wakana S, Nagae-Poetscher L, van Zijl PCM (2005) MRI atlas of human white matter. Elsevier, AmsterdamGoogle Scholar
  30. Navia BA, Cho E-S, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525–535PubMedCrossRefGoogle Scholar
  31. Parsons TD, Braaten AJ, Hall CD, Robertson KR (2006) Better quality of life with neuropsychological improvement on HAART. Health Qual Life Outcome 24:4–11Google Scholar
  32. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV (2009) Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 23:1977–1985PubMedCrossRefGoogle Scholar
  33. Pomara N, Crandall DT, Choi SJ, Johnson G, Lim KO (2001) White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiatr Res 106:15–24CrossRefGoogle Scholar
  34. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11:292–298PubMedCrossRefGoogle Scholar
  35. Rosas HD, Lee SY, Bender AC, Zaleta AK, Vangel M, Yu P, Fischi B, Pappu V, Onorato C, Cha JH, Salat DH, Hersch SM (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection”. NeuroImage 49:2995–3004PubMedCrossRefGoogle Scholar
  36. Smith SM, Nichols TE (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44:83–98PubMedCrossRefGoogle Scholar
  37. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23(S1):208–219CrossRefGoogle Scholar
  38. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens TE (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505PubMedCrossRefGoogle Scholar
  39. Song SK, Sun SW, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Demyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436PubMedCrossRefGoogle Scholar
  40. Sun SW, Liang HF, Le TQ, Armstrong RC, Cross AH, Song SK (2006) Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. NeuroImage 32:1195–1204PubMedCrossRefGoogle Scholar
  41. Tate DF, Conley J, Paul RH, Coop K, Zhang S, Zhou WJ, Laidlaw DH, Taylor LE, Flanigan T, Navia B, Cohen RA, Tashima K (2010) Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging Behav 4:68–79PubMedCrossRefGoogle Scholar
  42. Tate DF, Sampat M, Harezlak J, Flecas M, Hogan J, Dewey J, McCaffrey D, Branson D, Russell T, Conley J, Taylor M, Schifitto G, Zhong J, Daar ES, Alger J, Brown M, Singer E, Campbell T, McMahon D, Tso Y, Matesan J, Letendre S, Paulose S, Guagh M, Tripoli C, Yiannoutsos C, Bigler D, Cohen RA, Guttman CR, Navia B, HIV Neuroimaging Consortium (2011) Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies. J Neurovirol 17:368–379PubMedCrossRefGoogle Scholar
  43. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE, Lee JY, Lopez OL, Alzenstein HJ, Toga AW, Becker JT (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. NeuroImage 31:12–23PubMedCrossRefGoogle Scholar
  44. Thurnher MM, Castillo M, Stadler A, Rieger A, Schmid B, Sundgren PA (2005) Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. AJNR Am J Neuroradiol 26:2275–2281PubMedGoogle Scholar
  45. Tyor WR, Glass JD, Griffin JW, Becker PS, McArthur JC, Bezman L, Griffin DE (1992) Cytokine expression in the brain during the acquired immunodeficiency syndrome. Ann Neurol 31:349–360PubMedCrossRefGoogle Scholar
  46. Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur Farber JM, Griffin JW, Griffin DE (1993) Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol 33:576–582PubMedCrossRefGoogle Scholar
  47. Wohlschlaeger J, Wenger E, Mehraein P, Weis S (2009) White matter changes in HIV-1 infected brains: a combined gross anatomical and ultrastructural morphometric investigation of the corpus callosum. Clin Neurol Neurosurg 111:422–429PubMedCrossRefGoogle Scholar
  48. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV associated neurocognitive disorders. Neuropsychol Rev 19:152–168PubMedCrossRefGoogle Scholar
  49. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB (2006) Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 27:656–660PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2012

Authors and Affiliations

  • Tong Zhu
    • 1
  • Jianhui Zhong
    • 1
  • Rui Hu
    • 2
  • Madalina Tivarus
    • 1
  • Sven Ekholm
    • 1
  • Jaroslaw Harezlak
    • 4
  • Hernando Ombao
    • 5
  • Bradford Navia
    • 6
  • Ron Cohen
    • 7
  • Giovanni Schifitto
    • 1
    • 3
  1. 1.Department of Imaging SciencesUniversity of RochesterRochesterUSA
  2. 2.Department of Biostatistics and Computational BiologyUniversity of RochesterRochesterUSA
  3. 3.Department of NeurologyUniversity of RochesterRochesterUSA
  4. 4.Division of BiostatisticsIndiana University School of MedicineIndianapolisUSA
  5. 5.Department of StatisticsUniversity of California at IrvineIrvineUSA
  6. 6.Tufts University School of MedicineBostonUSA
  7. 7.Brown UniversityProvidenceUSA

Personalised recommendations