Advertisement

Journal of NeuroVirology

, Volume 18, Issue 5, pp 423–427 | Cite as

Brain structural and functional recovery following initiation of combination antiretroviral therapy

  • James T. Becker
  • Pablo Cuesta
  • Melissa Fabrizio
  • Gustavo Sudre
  • Emanuel N. Vergis
  • Antoine Douaihy
  • Ricardo Bajo
  • Allie Schubert
  • Oscar L. Lopez
  • Lauri Parkkonen
  • Fernando Maestu
  • Anto Bagic
Short Communication

Abstract

NeuroAIDS persists in the era of combination antiretroviral therapies. We describe here the recovery of brain structure and function following 6 months of therapy in a treatment-naive patient presenting with HIV-associated dementia. The patient’s neuropsychological test performance improved and his total brain volume increased by more than 5 %. Neuronal functional connectivity measured by magnetoencephalography changed from a pattern identical to that observed in other HIV-infected individuals to one that was indistinguishable from that of uninfected control subjects. These data suggest that at least some of the effects of HIV on the brain can be fully reversed with treatment.

Keywords

HIV disease NeuroAIDS Magnetoencephalography Functional connectivity 

Notes

Acknowledgments

This work was supported in part by funds from the National Institute of Mental Health (R03-MH081721). The sponsor had no role in the design, analysis, or interpretation of this study. The authors are grateful to D. Martineck and L. Teverovsky for their assistance with this research.

References

  1. Becker JT, Fabrizio M, Sudre G et al (2012a) Potential utility of resting-state magnetoencephalography power spectra as a biomarker of CNS abnormality in HIV disease. J Neurosci Methods 206:176–182PubMedCrossRefGoogle Scholar
  2. Becker JT, Bajo R, Fabrizio M et al. (2012) Functional connectivity measured with magnetoencephalography identifies persons with HIV disease. Brain Imaging Behav doi: 10.1007/s11682-012-9149-4
  3. Crawford JR, Garthwaite PH, Porter S (2010) Point and interval estimates of effect sizes for the case–controls design in neuropsychology: rationale, methods, implementations, and proposed reporting standards. Cogn Neuropsychol 27(3):245–260PubMedCrossRefGoogle Scholar
  4. Cysique LA, Brew BJ, Halman M et al (2005) Undetectable cerebrospinal fluid HIV RNA and beta-2 microglobulin do not indicate inactive AIDS dementia complex in highly active antiretroviral therapy-treated patients. J Acquir Immune Defic Syndr 39(4):426–429PubMedCrossRefGoogle Scholar
  5. Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999) Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13(10):1249–1253PubMedCrossRefGoogle Scholar
  6. Heaton RK, Taylor MJ (2004) Revised comprehensive norms for an expanded Halstead–Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Psychological Assessment Resources, OdessaGoogle Scholar
  7. Hlaváčková-Schindler K, Paluš M, Velmejka M, Bhattacharya J (2007) Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441(1):1–46CrossRefGoogle Scholar
  8. Mueller SG, Weiner MW, Thal LJ et al (2005) The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin N Am 15(4):869–877PubMedCrossRefGoogle Scholar
  9. Price RW, Epstein LG, Becker JT et al (2007) Biomarkers of HIV-1 CNS infection and injury. Neurology 69(18):1781–1788PubMedCrossRefGoogle Scholar
  10. Sacktor N, Lyles RH, Skolasky R et al (2001) HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology 56:257–260PubMedCrossRefGoogle Scholar
  11. Sacktor N, McDermott MP, Marder K et al (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142PubMedCrossRefGoogle Scholar
  12. Simioni S, Cavassini M, Annoni JM et al (2010) Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS 24(9):1243–1250PubMedGoogle Scholar
  13. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews PM, Federico A, De Stefano N (2002) Accurate, robust and automated longitudinal and cross-sectional brain change analysis. NeuroImage 17(1):479–489Google Scholar
  14. Woods SP, Rippeth JD, Frol AB et al (2004) Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol 26(6):759–778PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2012

Authors and Affiliations

  • James T. Becker
    • 1
    • 2
    • 3
    • 9
  • Pablo Cuesta
    • 4
  • Melissa Fabrizio
    • 1
  • Gustavo Sudre
    • 5
  • Emanuel N. Vergis
    • 6
  • Antoine Douaihy
    • 1
  • Ricardo Bajo
    • 4
  • Allie Schubert
    • 1
  • Oscar L. Lopez
    • 2
  • Lauri Parkkonen
    • 7
    • 8
  • Fernando Maestu
    • 4
  • Anto Bagic
    • 2
  1. 1.Department of PsychiatryUniversity of PittsburghPittsburghUSA
  2. 2.Department of NeurologyUniversity of PittsburghPittsburghUSA
  3. 3.Department of PsychologyUniversity of PittsburghPittsburghUSA
  4. 4.Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical TechnologyComplutense University of Madrid and Technical University of MadridMadridSpain
  5. 5.Center for the Neural Basis of CognitionCarnegie Mellon UniversityPittsburghUSA
  6. 6.Department of MedicineUniversity of PittsburghPittsburghUSA
  7. 7.Brain Research Unit, Low Temperature LaboratoryAalto University School of ScienceHelsinkiFinland
  8. 8.Elekta OyHelsinkiFinland
  9. 9.Neuropsychology Research ProgramPittsburghUSA

Personalised recommendations