Journal of NeuroVirology

, Volume 18, Issue 4, pp 303–312 | Cite as

Cerebrovascular risk factors and brain microstructural abnormalities on diffusion tensor images in HIV-infected individuals

  • Beau K. Nakamoto
  • Neda Jahanshad
  • Aaron McMurtray
  • Kalpana J. Kallianpur
  • Dominic C. Chow
  • Victor G. Valcour
  • Robert H. Paul
  • Liron Marotz
  • Paul M. Thompson
  • Cecilia M. Shikuma
Article

Abstract

HIV-associated neurocognitive disorder remains prevalent in HIV-infected individuals despite effective antiretroviral therapy. As these individuals age, comorbid cerebrovascular disease will likely impact cognitive function. Effective tools to study this impact are needed. This study used diffusion tensor imaging (DTI) to characterize brain microstructural changes in HIV-infected individuals with and without cerebrovascular risk factors. Diffusion-weighted MRIs were obtained in 22 HIV-infected subjects aged 50 years or older (mean age = 58 years, standard deviation = 6 years; 19 males, three females). Tensors were calculated to obtain fractional anisotropy (FA) and mean diffusivity (MD) maps. Statistical comparisons accounting for multiple comparisons were made between groups with and without cerebrovascular risk factors. Abnormal glucose metabolism (i.e., impaired fasting glucose, impaired glucose tolerance, or diabetes mellitus) was associated with significantly higher MD (false discovery rate (FDR) critical p value = 0.008) and lower FA (FDR critical p value = 0.002) in the caudate and lower FA in the hippocampus (FDR critical p value = 0.004). Pearson correlations were performed between DTI measures in the caudate and hippocampus and age- and education-adjusted composite scores of global cognitive function, memory, and psychomotor speed. There were no detectable correlations between the neuroimaging measures and measures of cognition. In summary, we demonstrate that brain microstructural abnormalities are associated with abnormal glucose metabolism in the caudate and hippocampus of HIV-infected individuals. Deep gray matter structures and the hippocampus may be vulnerable in subjects with comorbid abnormal glucose metabolism, but our results should be confirmed in further studies.

Keywords

HIV Cerebrovascular disease Diffusion tensor imaging 

Glossary

Amyloid-beta

APOE ε4

Apolipoprotein epsilon 4

ATP-III

Adult Treatment Panel III

BDI-II

Beck Depression Inventory II

cART

Combination antiretroviral therapy

DBP

Diastolic blood pressure

DTI

Diffusion tensor imaging

FA

Fractional anisotropy

FDR

False discovery rate

IDE

Insulin-degrading enzyme

MD

Mean diffusivity

NPZ-3-mem

Age- and education-adjusted composite score of memory

NPZ-3-pm

Age- and education-adjusted composite score of psychomotor speed

NPZ-8

Age- and education-adjusted composite score of global cognitive function

OGTT

2-h oral glucose tolerance test

PET

Positron emission tomography

ROIs

Regions of interest

SBP

Systolic blood pressure

SD

Standard deviation

Notes

Acknowledgments

BKN, KJK, DCC, and CMS are funded in part by research grants P20RR011091, U54NS43049, and U54RR026136. NJ and PT are funded in part by R01 EB008432 and EB 007813, and R01 AG040060 and a UCLA Medical Informatics Fellowship (NJ).

References

  1. American Diabetes Association (2009) Standards of medical care in diabetes—2009. Diabetes Care 32(Suppl 1):S13–S61CrossRefGoogle Scholar
  2. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  3. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34:51–61PubMedCrossRefGoogle Scholar
  4. Basser PJ, Mattiello J, LeBihan D (1994a) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedCrossRefGoogle Scholar
  5. Basser PJ, Mattiello J, LeBihan D (1994b) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson 103:247–254CrossRefGoogle Scholar
  6. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961) An inventory for measuring depression. Arch Gen Psychiatry 4:561–571PubMedCrossRefGoogle Scholar
  7. Becker JT, Kingsley L, Mullen J et al (2009) Vascular risk factors, HIV serostatus, and cognitive dysfunction in gay and bisexual men. Neurology 73:1292–1299PubMedCrossRefGoogle Scholar
  8. Becker JT, Maruca V, Kingsley LA et al (2011a) Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology 54:113–121PubMedCrossRefGoogle Scholar
  9. Becker JT, Sanders J, Madsen SK et al (2011b) Subcortical brain atrophy persists even in HAART-regulated HIV disease. Brain Imag Behav 5:77–85CrossRefGoogle Scholar
  10. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Biostatis Soc 57:289–300Google Scholar
  11. Brown TT, Cole SR, Li X et al (2005) Antiretroviral therapy and the prevalence and incidence of diabetes mellitus in the multicenter AIDS cohort study. Arch Intern Med 165:1179–1184PubMedCrossRefGoogle Scholar
  12. Brown TT, Xu X, John M et al (2009) Fat distribution and longitudinal anthropometric changes in HIV-infected men with and without clinical evidence of lipodystrophy and HIV-uninfected controls: a substudy of the Multicenter AIDS Cohort Study. AIDS Res Ther 6:8PubMedCrossRefGoogle Scholar
  13. Chang L, Wong V, Nakama H et al (2008) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J Neuroimmune Pharmacol 3:265–274PubMedCrossRefGoogle Scholar
  14. Chen Y, An H, Zhu H et al (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. NeuroImage 47:1154–1162PubMedCrossRefGoogle Scholar
  15. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497CrossRefGoogle Scholar
  16. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106:3143–3421Google Scholar
  17. Filippi CG, Ulug AM, Ryan E, Ferrando SJ, van Gorp W (2001) Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. Ajnr 22:277–283PubMedGoogle Scholar
  18. Gongvatana A, Schweinsburg BC, Taylor MJ et al (2009) White matter tract injury and cognitive impairment in human immunodeficiency virus-infected individuals. J Neurovirol 15:187–195PubMedCrossRefGoogle Scholar
  19. Gongvatana A, Cohen RA, Correia S et al (2011) Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol 17:477–486PubMedCrossRefGoogle Scholar
  20. Gorelick PB, Bowler JV (2010) Advances in vascular cognitive impairment. Stroke; J Cereb Circ 41:e93–e98CrossRefGoogle Scholar
  21. Hoare J, Fouche JP, Spottiswoode B et al (2011) White-matter damage in clade C HIV-positive subjects: a diffusion tensor imaging study. J Neuropsychiatry Clin Neurosci 23:308–315PubMedCrossRefGoogle Scholar
  22. Jellinger KA (2008) Morphologic diagnosis of “vascular dementia”—a critical update. J Neurol Sci 270:1–12PubMedCrossRefGoogle Scholar
  23. Justman JE, Benning L, Danoff A et al (2003) Protease inhibitor use and the incidence of diabetes mellitus in a large cohort of HIV-infected women. J Acquir Immune Defic Syndr 32:298–302PubMedCrossRefGoogle Scholar
  24. Kallianpur KJ, Kirk GR, Sailasuta N et al (2011) Regional cortical thinning associated with detectable levels of HIV DNA. Cereb Cortex. doi:10.1093/cercor/bhr285
  25. Kuper M, Rabe K, Esser S et al (2011) Structural gray and white matter changes in patients with HIV. J Neurol 258:1066–1075PubMedCrossRefGoogle Scholar
  26. Lamport DJ, Lawton CL, Mansfield MW, Dye L (2009) Impairments in glucose tolerance can have a negative impact on cognitive function: a systematic research review. Neurosci Biobehav Rev 33:394–413PubMedCrossRefGoogle Scholar
  27. Leow A, Huang SC, Geng A et al (2005) Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. Inf Process Med Imaging 19:493–503PubMedCrossRefGoogle Scholar
  28. McMurtray A, Kwee S, Grace T, Shikuma C (2008) Changes in cerebral glucose metabolism associated with the presence of the apolipoprotein E4 allele in older HIV seropositive individuals. In: 11th RCMI International Symposium on Health Disparities, 2008, Honolulu, HawaiiGoogle Scholar
  29. Nakamoto BK, Jahanshad N, Kallianpur K, Shikuma C, Valcour VG, Thompson PM (2010) Impact of ApoE and cerebrovascular risk factors on brain structure and cognition in HIV in the HAART era. In: CROI, 2010 February 16–19, San Francisco, CAGoogle Scholar
  30. Nakamoto BK, Valcour VG, Kallianpur K et al (2011) Impact of cerebrovascular disease on cognitive function in HIV-infected patients. J Acquir Immune Defic Syndr 57:e66–e68PubMedCrossRefGoogle Scholar
  31. Navia BA, Cho ES, Petito CK, Price RW (1986) The AIDS dementia complex: II. Neuropathology. Ann Neurol 19:525–535PubMedCrossRefGoogle Scholar
  32. Ovbiagele B, Nath A (2011) Increasing incidence of ischemic stroke in patients with HIV infection. Neurology 76:444–450PubMedCrossRefGoogle Scholar
  33. Pfefferbaum A, Rosenbloom MJ, Adalsteinsson E, Sullivan EV (2007) Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 130:48–64PubMedCrossRefGoogle Scholar
  34. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV (2009) Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS (London, England) 23:1977–1985CrossRefGoogle Scholar
  35. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11:292–298PubMedCrossRefGoogle Scholar
  36. S Roriz-Filho J, Sa-Roriz TM, Rosset I et al (2009) (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 1792:432–443PubMedGoogle Scholar
  37. Schmitt FA, Bigley JW, McKinnis R, Logue PE, Evans RW, Drucker JL (1988) Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N Engl J Med 319:1573–1578PubMedCrossRefGoogle Scholar
  38. Shiramizu B, Paul R, Williams A et al (2007) HIV proviral DNA associated with decreased neuropsychological function. J Neuropsychiatry Clin Neurosci 19:157–163PubMedCrossRefGoogle Scholar
  39. Strauss E, Sherman EMS, Spreen O (2006) A compendium of neuropsychological tests: administration, norms, and commentary, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  40. Thames AD, Foley JM, Panos SE et al (2011) Past stimulant abuse is associated with reduced basal ganglia and hippocampal integrity in older HIV+ adults. A Diffusion Tensor Imaging Study 2:129–134Google Scholar
  41. Tien PC, Schneider MF, Cole SR et al (2008) Antiretroviral therapy exposure and insulin resistance in the Women's Interagency HIV study. J Acquir Immune Defic Syndr 49:369–376PubMedCrossRefGoogle Scholar
  42. U.S. Preventive Services Task Force (2007) Screening for high blood pressure: U.S. Preventive Services Task Force reaffirmation recommendation statement. Ann Intern Med 147:783–786Google Scholar
  43. Valcour VG, Shikuma CM, Shiramizu BT et al (2005) Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr 38:31–36PubMedCrossRefGoogle Scholar
  44. Valcour VG, Sacktor NC, Paul RH et al (2006) Insulin resistance is associated with cognition among HIV-1-infected patients: the Hawaii Aging With HIV cohort. J Acquir Immune Defic Syndr 43:405–410PubMedCrossRefGoogle Scholar
  45. Valcour V, Maki P, Bacchetti P et al (2012) Insulin resistance and cognition among HIV-infected and HIV-uninfected adult women: The Women’s Interagency HIV Study. AIDS Res Hum Retroviruses 28(5):447–53Google Scholar
  46. Wright EJ, Grund B, Robertson K et al (2010) Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology 75:864–873PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2012

Authors and Affiliations

  • Beau K. Nakamoto
    • 1
    • 2
    • 7
  • Neda Jahanshad
    • 3
  • Aaron McMurtray
    • 4
  • Kalpana J. Kallianpur
    • 1
  • Dominic C. Chow
    • 1
  • Victor G. Valcour
    • 5
  • Robert H. Paul
    • 6
  • Liron Marotz
    • 1
  • Paul M. Thompson
    • 3
  • Cecilia M. Shikuma
    • 1
  1. 1.University of HawaiiHonoluluUSA
  2. 2.Straub Clinics and HospitalHonoluluUSA
  3. 3.Laboratory of Neuro Imaging, Departments of Neurology and PsychiatryUCLA School of MedicineLos AngelesUSA
  4. 4.Ventura County Medical CenterVenturaUSA
  5. 5.University of California at San FranciscoSan FranciscoUSA
  6. 6.University of MissouriSt. LouisUSA
  7. 7.Hawaii Center for AIDS, John A. Burns School of MedicineUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations