Journal of NeuroVirology

, Volume 17, Issue 6, pp 578–589 | Cite as

Varicella zoster virus (VZV) infects and establishes latency in enteric neurons

  • Jason J. Chen
  • Anne A. Gershon
  • Zhishan Li
  • Robert A. Cowles
  • Michael D. Gershon


Case reports have linked varicella-zoster virus (VZV) to gastrointestinal disorders, including severe abdominal pain preceding fatal varicella and acute colonic pseudoobstruction (Ogilvie's syndrome). Because we had previously detected DNA and transcripts encoding latency-associated VZV gene products in the human gut, we sought to determine whether latent VZV is present in the human enteric nervous system (ENS) and, if so, to identify the cells in which it is located and its route to the bowel. Neither DNA, nor transcripts encoding VZV gene products, could be detected in resected gut from any of seven control children (<1 year old) who had not received the varicella vaccine or experienced varicella; however, VZV DNA and transcripts were each found to be present in resected bowel from 6/6 of children with a past history of varicella and in that of 6/7 of children who received the varicella vaccine. Both wild-type (WT) and vaccine-type (vOka) VZV thus establish latent infection in human gut. To determine routes by which VZV might gain access to the bowel, we injected guinea pigs with human or guinea pig lymphocytes expressing green fluorescent protein (GFP) under the control of the VZV ORF66 gene (VZVOKA66.GFP). GFP-expressing enteric neurons were found throughout the bowel within 2 days and continued to be present for greater than 6 weeks. DNA encoding VZV gene products also appeared in enteric and dorsal root ganglion (DRG) neurons following intradermal administration of WT-VZV and in enteric neurons after intradermal injection of VZVOKA66.GFP; moreover, a small number of guinea pig DRG neurons were found to project both to the skin and the intraperitoneal viscera. Viremia, in which lymphocytes carry VZV, or axonal transport from DRG neurons infected through their epidermal projections are thus each potential routes that enable VZV to gain access to the ENS.


Varicella zoster virus Acute colonic pseudoobstruction Enteric neurons Varicella vaccine 


  1. Alpay K, Yandt M (1994) Herpes zoster and Ogilvie's syndrome. Dermatology 189:312PubMedCrossRefGoogle Scholar
  2. Ambagala AP, Bosma T, Ali MA, Poustovoitov M, Chen JJ, Gershon MD, Adams PD, Cohen JI (2009) Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3.1 and h3.3. J Virol 83:200–209PubMedCrossRefGoogle Scholar
  3. Arvin AM, Cohen J (2007) Varicella-Zoster Virus. In: Virology. Fields, (ed). Raven Press, pp 2773-2818Google Scholar
  4. Chen J, Gershon A, Silverstein SJ, Li ZS, Lungu O, Gershon MD (2003) Latent and lytic infection of isolated guinea pig enteric and dorsal root ganglia by varicella zoster virus. J Med Virol 70:S71–S78PubMedCrossRefGoogle Scholar
  5. Chen JJ, Zhu Z, Gershon AA, Gershon MD (2004) Mannose 6-phosphate receptor dependence of varicella zoster virus infection in vitro and in the epidermis during varicella and zoster. Cell 119:915–926PubMedCrossRefGoogle Scholar
  6. Chen J, Gershon A, Bischoff S, Blaszyk H, Ciolino A, Mawe G, Gershon MD (2005) Latency of VZV in ganglia of the human small and large intestines. In: 30th International Herpesvirus Workshop: Turku, Finland, pp Conference abstract 7.19Google Scholar
  7. Cohrs RJ, Gilden DH (2003) Varicella zoster virus transcription in latently-infected human ganglia. Anticancer Res 23:2063–2069PubMedGoogle Scholar
  8. Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG (2003) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665PubMedCrossRefGoogle Scholar
  9. Costas PD, Sabin TD, Wang KK, Jones DS, Seckel BR (1998) Transcutaneous access to retrograde axonal flow. Muscle Nerve 21:531–532PubMedCrossRefGoogle Scholar
  10. Gabel C, Dubey L, Steinberg S, Gershon M, Gershon A (1989) Varicella-zoster virus glycoproteins are phosphorylated during posttranslational maturation. J Virol 63:4264–4276PubMedGoogle Scholar
  11. Gaillat J, al. E (2011) Does monastic life predispose to the risk of Saint Anthony's fire (Herpes Zoster)? Clin Infect Dis 53:405PubMedCrossRefGoogle Scholar
  12. Galea SA, Sweet A, Beninger P, Steinberg SP, Larussa PS, Gershon AA, Sharrar RG (2008) The safety profile of varicella vaccine: a 10-year review. J Infect Dis 197(Suppl 2):S165–S169PubMedCrossRefGoogle Scholar
  13. Gan L, Wang M, Chen J, Gershon M, Gershon AA (2011) New persectives on varicella-zoster infection in a guinea pig model (In preparation)Google Scholar
  14. Gershon AA, Sherman DL, Zhu Z, Gabel CA, Ambron RT, Gershon MD (1994) Intracellular transport of newly synthesized varicella-zoster virus: final envelopment in the trans-Golgi network. J Virol 68:6372–6390PubMedGoogle Scholar
  15. Gershon A, Chen J, LaRussa P, Steinberg S (2007) Varicella-zoster virus. In: Murray PR, Baron E, Jorgensen J, Landry M, Pfaller M (eds) Manual of clinical microbiology. ASM Press, Washington, D.C., pp 1537–1548Google Scholar
  16. Gershon A, Takahashi M, Seward J (2008a) Live attenuated varicella vaccine. In: Plotkin S, Orenstein W, Offit P (eds) Vaccines. WB Saunders, Philadelphia, pp 915–958Google Scholar
  17. Gershon AA, Chen J, Gershon MD (2008b) A model of lytic, latent, and reactivating varicella-zoster virus infections in isolated enteric neurons. J Infect Dis 197(Suppl 2):S61–S65PubMedCrossRefGoogle Scholar
  18. Hope-Simpson RE (1965) The nature of herpes zoster: a long term study and a new hypothesis. Proc R Soc Med 58:9–20PubMedGoogle Scholar
  19. Kennedy PG, Cohrs RJ (2010) Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 16:411–418PubMedGoogle Scholar
  20. Kondo T, Oshima T, Obata K, Sakurai J, Knowles CH, Matsumoto T, Noguchi K, Miwa H (2010) Role of transient receptor potential A1 in gastric nociception. Digestion 82:150–155PubMedCrossRefGoogle Scholar
  21. Lowry PW, Solem S, Watson BN, Koropchak C, Thackeray H, Kinchington P, Ruyechan W, Ling P, Hay J, Arvin A (1992) Immunity in strain 2 guinea pigs inoculated with vaccinia virus recombinants expressing varicella-zoster virus glycoproteins I, IV, V, or the protein product of the immediate early gene 62. J Gen Virol 73:811–819PubMedCrossRefGoogle Scholar
  22. Lungu O, Sun XW, Wright TC, Ferenczy A, Richart RM, Silverstein S (1995) A polymerase chain reaction-enzyme-linked immunosorbent assay method for detecting human papillomavirus in cervical carcinomas and high-grade cervical cancer precursors. Obstet Gynecol 85:337–342PubMedCrossRefGoogle Scholar
  23. Lungu O, Panagiotidis C, Annunziato P, Gershon A, Silverstein S (1998) Aberrant intracellular localization of varicella-zoster virus regulatory proteins during latency. Proc Natl Acad Sci USA 95:7080–7085PubMedCrossRefGoogle Scholar
  24. Mallet E, Maitre M, Mouterde O (2006) Complications of the digestive tract in varicella infection including two cases of erosive gastritis. Eur J Pediatr 165:64–65PubMedCrossRefGoogle Scholar
  25. Moffat JF, Stein MD, Kaneshima H, Arvin AM (1995) Tropism of varicella-zoster virus for human CD4+ and CD8+ T lymphocytes and epidermal cells in SCID-hu mice. J Virol 69:5236–5242PubMedGoogle Scholar
  26. Myers M, Stanberry L (1991) Drug testing for activity against varicella-zoster virus in hairless guinea pigs. Antiviral Res 15:341–344PubMedCrossRefGoogle Scholar
  27. Myers M, Stanberry L, Edmond B (1985) Varicella-zoster virus infection of strain 2 guinea pigs. J Infect Dis 151:106–113PubMedCrossRefGoogle Scholar
  28. Myers MG, Connelly B, Stanberry LR (1991) Varicella in hairless guinea pigs. J Infect Dis 163:746–751PubMedCrossRefGoogle Scholar
  29. Nagel MA, Choe A, Traktinskiy I, Cordery-Cotter R, Gilden D, Cohrs RJ (2011) Varicella-zoster virus transcriptome in latently infected human ganglia. J Virol 85:2276–2287PubMedCrossRefGoogle Scholar
  30. Nomdedeu JF, Nomdedeu J, Martino R, Bordes R, Portorreal R, Sureda A, Domingo-Albos A, Rutllant M, Soler J (1995) Ogilvie's syndrome from disseminated varicella-zoster infection and infarcted celiac ganglia. J Clin Gastroenterol 20:157–159PubMedCrossRefGoogle Scholar
  31. Phillips RJ, Hargrave SL, Rhodes BS, Zopf DA, Powley TL (2004) Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers. J Neurosci Methods 133:99–107PubMedCrossRefGoogle Scholar
  32. Pui JC, Furth EE, Minda J, Montone KT (2001) Demonstration of varicella-zoster virus infection in the muscularis propria and myenteric plexi of the colon in an HIV-positive patient with herpes zoster and small bowel pseudo-obstruction (Ogilvie's syndrome). Am J Gastroenterol 96:1627–1630PubMedCrossRefGoogle Scholar
  33. Qiao LY, Grider JR (2009) Colitis induces calcitonin gene-related peptide expression and Akt activation in rat primary afferent pathways. Exp Neurol 219:93–103PubMedCrossRefGoogle Scholar
  34. Sabella C, Lowry P, Abbruzzi G, Koropchek C, Kinchington P, Sagedh-Zadeh M, Hay J, Ruyechan W, Arvin A (1993) Immunization with immediate-early tegument protein (open reading frame 62) of varicella-zoster virus protects guinea pigs against virus challenge. J Virol 67:7673–7676PubMedGoogle Scholar
  35. Satyaprakash AK, Tremaine AM, Stelter AA, Creed R, Ravanfar P, Mendoza N, Mehta SK, Rady PL, Pierson DL, Tyring SK (2009) Viremia in Acute Herpes Zoster. J Infect Dis 200(1):26–32PubMedCrossRefGoogle Scholar
  36. Soong W, Schultz JC, Patera AC, Sommer MH, Cohen JI (2000) Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J Virol 74:1864–1870PubMedCrossRefGoogle Scholar
  37. Stallings CL, Duigou GJ, Gershon AA, Gershon MD, Silverstein SJ (2006) The cellular localization pattern of varicella-zoster virus ORF29p is influenced by proteasome-mediated degradation. J Virol 80:1497–1512PubMedCrossRefGoogle Scholar
  38. Ussery XT, Annunziato P, Gershon A, Reid B, Lungu O, Langston C, Silverstein S, Lee K, Baker CJ (1998) Congenital varicella-zoster infection and Barrett's esophagus. J Infect Dis 178:539–543PubMedGoogle Scholar
  39. Walters MS, Kyratsous CA, Wan S, Silverstein S (2008) Nuclear import of the varicella-zoster virus latency-associated protein ORF63 in primary neurons requires expression of the lytic protein ORF61 and occurs in a proteasome-dependent manner. J Virol 82:8673–8686PubMedCrossRefGoogle Scholar
  40. Zerboni L, Sobel RA, Ramachandran V, Rajamani J, Ruyechan W, Abendroth A, Arvin A (2010) Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia. J Virol 84:3421–3430PubMedCrossRefGoogle Scholar
  41. Zhu Z, Gershon MD, Gabel C, Sherman D, Ambron R, Gershon AA (1995) Entry and egress of VZV: role of mannose 6-phosphate, heparan sulfate proteoglycan, and signal sequences in targeting virions and viral glycoproteins. Neurology 45:S15–S17PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Jason J. Chen
    • 1
  • Anne A. Gershon
    • 2
  • Zhishan Li
    • 1
  • Robert A. Cowles
    • 3
  • Michael D. Gershon
    • 1
  1. 1.Departments of Pathology and Cell BiologyColumbia University, College of P&SNew YorkUSA
  2. 2.Departments of PediatricsColumbia University, College of P&SNew YorkUSA
  3. 3.Departments of Pediatric SurgeryColumbia University, College of P&SNew YorkUSA

Personalised recommendations