Journal of NeuroVirology

, Volume 17, Issue 6, pp 600–612 | Cite as

Simian varicella virus gene expression during acute and latent infection of rhesus macaques

  • Christine Meyer
  • Amelia Kerns
  • Alex Barron
  • Craig Kreklywich
  • Daniel N. Streblow
  • Ilhem Messaoudi


Varicella zoster virus (VZV) is a neurotropic α-herpesvirus that causes chickenpox during primary infection and establishes latency in sensory ganglia. Reactivation of VZV results in herpes zoster and other neurological complications. Our understanding of the VZV transcriptome during acute and latent infection in immune competent individuals remains incomplete. Infection of rhesus macaques with the homologous simian varicella virus (SVV) recapitulates the hallmarks of VZV infection. We therefore characterized the SVV transcriptome by quantitative real-time reverse transcriptase PCR during acute infection in bronchial alveolar lavage (BAL) cells and peripheral blood mononuclear cells, and during latency in sensory ganglia obtained from the same rhesus macaques. During acute infection, all known SVV open reading frames (ORFs) were detected, and the most abundantly expressed ORFs are involved in virus replication and assembly such as the transcriptional activator ORF 63 and the structural proteins ORF 41 and ORF 49. In contrast, latent SVV gene expression is highly restricted. ORF 61, a viral transactivator and latency-associated transcript, is the most prevalent transcript detected in sensory ganglia. We also detected ORFs A, B, 4, 10, 63, 64, 65, 66, and 68 though significantly less frequently than ORF 61. This comprehensive analysis has revealed genes that potentially play a role in the establishment and/or maintenance of SVV latency.


Herpesvirus Simian varicella virus Gene expression Latency Rhesus macaque 



We would like to thank Anj Stadnik and Kyung Park for technical assistance; the Division of Animal Resources (DAR) at the Oregon National Primate Research Center for expert animal care, especially Drs. Anne Lewis and Lois Colgin for conducting the necropsies and collecting tissues; and Alfred Legasse, Miranda Fischer, and Jesse Dewayne for collection of blood and BAL samples. This work was supported by the American Heart Association career development grant 0930234N, NIH R01AG037042, 2T32AI007472-16, NIH P51 RR00163-51, and the Brookdale Foundation.

Supplementary material

13365_2011_57_Fig3_ESM.jpg (11.7 mb)
Supplementary Table 1

(JPEG 11929 kb)

13365_2011_57_MOESM1_ESM.eps (719 kb)
High resolution image (EPS 718 kb)


  1. Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM (2001) Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 75:4878–4888PubMedCrossRefGoogle Scholar
  2. Ali MA, Li Q, Fischer ER, Cohen JI (2009) The insulin degrading enzyme binding domain of varicella-zoster virus (VZV) glycoprotein E is important for cell-to-cell spread and VZV infectivity, while a glycoprotein I binding domain is essential for infection. Virology 386:270–279PubMedCrossRefGoogle Scholar
  3. Ambagala AP, Cohen JI (2007) Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 81:7844–7851PubMedCrossRefGoogle Scholar
  4. Azarkh Y, Gilden D, Cohrs RJ (2010) Molecular characterization of varicella zoster virus in latently infected human ganglia: physical state and abundance of VZV DNA, quantitation of viral transcripts and detection of VZV-specific proteins. Curr Top Microbiol Immunol 342:229–241PubMedCrossRefGoogle Scholar
  5. Cohen JI, Nguyen H (1998) Varicella-zoster virus ORF61 deletion mutants replicate in cell culture, but a mutant with stop codons in ORF61 reverts to wild-type virus. Virology 246:306–316PubMedCrossRefGoogle Scholar
  6. Cohen JI, Sato H, Srinivas S, Lekstrom K (2001) Varicella-zoster virus (VZV) ORF65 virion protein is dispensable for replication in cell culture and is phosphorylated by casein kinase II, but not by the VZV protein kinases. Virology 280:62–71PubMedCrossRefGoogle Scholar
  7. Cohen JI, Straus SE, Arvin AM (2007) Varicella-zoster virus replication, pathogenesis, and management. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2773–2818Google Scholar
  8. Cohrs RJ, Gilden DH (2007) Prevalence and abundance of latently transcribed varicella-zoster virus genes in human ganglia. J Virol 81:2950–2956PubMedCrossRefGoogle Scholar
  9. Cohrs RJ, Barbour MB, Mahalingam R, Wellish M, Gilden DH (1995) Varicella-zoster virus (VZV) transcription during latency in human ganglia: prevalence of VZV gene 21 transcripts in latently infected human ganglia. J Virol 69:2674–2678PubMedGoogle Scholar
  10. Cohrs RJ, Barbour M, Gilden DH (1996) Varicella-zoster virus (VZV) transcription during latency in human ganglia: detection of transcripts mapping to genes 21, 29, 62, and 63 in a cDNA library enriched for VZV RNA. J Virol 70:2789–2796PubMedGoogle Scholar
  11. Cohrs RJ, Randall J, Smith J, Gilden DH, Dabrowski C, van Der Keyl H, Tal-Singer R (2000) Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J Virol 74:11464–11471PubMedCrossRefGoogle Scholar
  12. Cohrs RJ, Gilden DH, Kinchington PR, Grinfeld E, Kennedy PG (2003a) Varicella-zoster virus gene 66 transcription and translation in latently infected human ganglia. J Virol 77:6660–6665PubMedCrossRefGoogle Scholar
  13. Cohrs RJ, Hurley MP, Gilden DH (2003b) Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicella-zoster virus. J Virol 77:11718–11732PubMedCrossRefGoogle Scholar
  14. Deitch SB, Gilden DH, Wellish M, Smith J, Cohrs RJ, Mahalingam R (2005) Array analysis of simian varicella virus gene transcription in productively infected cells in tissue culture. J Virol 79:5315–5325PubMedCrossRefGoogle Scholar
  15. Eisfeld AJ, Turse SE, Jackson SA, Lerner EC, Kinchington PR (2006) Phosphorylation of the varicella-zoster virus (VZV) major transcriptional regulatory protein IE62 by the VZV open reading frame 66 protein kinase. J Virol 80:1710–1723PubMedCrossRefGoogle Scholar
  16. Eisfeld AJ, Yee MB, Erazo A, Abendroth A, Kinchington PR (2007) Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol 81:9034–9049PubMedCrossRefGoogle Scholar
  17. Gray WL (2010) Simian varicella virus: molecular virology. Curr Top Microbiol Immunol 342:291–308PubMedCrossRefGoogle Scholar
  18. Gray WL, Oakes JE (1984) Simian varicella virus DNA shares homology with human varicella-zoster virus DNA. Virology 136:241–246PubMedCrossRefGoogle Scholar
  19. Gray WL, Starnes B, White MW, Mahalingam R (2001) The DNA sequence of the simian varicella virus genome. Virology 284:123–130PubMedCrossRefGoogle Scholar
  20. Gray WL, Mullis L, Soike KF (2002) Viral gene expression during acute simian varicella virus infection. J Gen Virol 83:841–846PubMedGoogle Scholar
  21. Gray WL, Davis K, Ou Y, Ashburn C, Ward TM (2007) Simian varicella virus gene 61 encodes a viral transactivator but is non-essential for in vitro replication. Arch Virol 152:553–563PubMedCrossRefGoogle Scholar
  22. Grinfeld E, Kennedy PG (2007) The pattern of viral persistence in monkeys intra-tracheally infected with Simian varicella virus. Virus Genes 35:289–292PubMedCrossRefGoogle Scholar
  23. Hood C, Cunningham AL, Slobedman B, Arvin AM, Sommer MH, Kinchington PR, Abendroth A (2006) Varicella-zoster virus ORF63 inhibits apoptosis of primary human neurons. J Virol 80:1025–1031PubMedCrossRefGoogle Scholar
  24. Kaufer BB, Smejkal B, Osterrieder N (2010) The varicella-zoster virus ORFS/L (ORF0) gene is required for efficient viral replication and contains an element involved in DNA cleavage. J Virol 84:11661–11669PubMedCrossRefGoogle Scholar
  25. Kemble GW, Annunziato P, Lungu O, Winter RE, Cha TA, Silverstein SJ, Spaete RR (2000) Open reading frame S/L of varicella-zoster virus encodes a cytoplasmic protein expressed in infected cells. J Virol 74:11311–11321PubMedCrossRefGoogle Scholar
  26. Kennedy PG, Cohrs RJ (2010) Varicella-zoster virus human ganglionic latency: a current summary. J Neurovirol 16:411–418PubMedGoogle Scholar
  27. Kennedy PG, Grinfeld E, Bell JE (2000) Varicella-zoster virus gene expression in latently infected and explanted human ganglia. J Virol 74:11893–11898PubMedCrossRefGoogle Scholar
  28. Kennedy PG, Grinfeld E, Bontems S, Sadzot-Delvaux C (2001) Varicella-zoster virus gene expression in latently infected rat dorsal root ganglia. Virology 289:218–223PubMedCrossRefGoogle Scholar
  29. Kennedy PG, Grinfeld E, Craigon M, Vierlinger K, Roy D, Forster T, Ghazal P (2005) Transcriptomal analysis of varicella-zoster virus infection using long oligonucleotide-based microarrays. J Gen Virol 86:2673–2684PubMedCrossRefGoogle Scholar
  30. Kinchington PR, Fite K, Turse SE (2000) Nuclear accumulation of IE62, the varicella-zoster virus (VZV) major transcriptional regulatory protein, is inhibited by phosphorylation mediated by the VZV open reading frame 66 protein kinase. J Virol 74:2265–2277PubMedCrossRefGoogle Scholar
  31. Litwin V, Jackson W, Grose C (1992) Receptor properties of two varicella-zoster virus glycoproteins, gpI and gpIV, homologous to herpes simplex virus gE and gI. J Virol 66:3643–3651PubMedGoogle Scholar
  32. Mahalingam R, Smith D, Wellish M, Wolf W, Dueland AN, Cohrs R, Soike K, Gilden D (1991) Simian varicella virus DNA in dorsal root ganglia. Proc Natl Acad Sci USA 88:2750–2752PubMedCrossRefGoogle Scholar
  33. Mallory S, Sommer M, Arvin AM (1997) Mutational analysis of the role of glycoprotein I in varicella-zoster virus replication and its effects on glycoprotein E conformation and trafficking. J Virol 71:8279–8288PubMedGoogle Scholar
  34. Mallory S, Sommer M, Arvin AM (1998) Analysis of the glycoproteins I and E of varicella-zoster virus (VZV) using deletional mutations of VZV cosmids. J Infect Dis 178(Suppl 1):S22–S26PubMedCrossRefGoogle Scholar
  35. McMillan DJ, Kay J, Mills JS (1997) Characterization of the proteinase specified by varicella-zoster virus gene 33. J Gen Virol 78(Pt 9):2153–2157PubMedGoogle Scholar
  36. Messaoudi I, Barron A, Wellish M, Engelmann F, Legasse A, Planer S, Gilden D, Nikolich-Zugich J, Mahalingam R (2009) Simian varicella virus infection of rhesus macaques recapitulates essential features of varicella zoster virus infection in humans. PLoS Pathog 5:e1000657PubMedCrossRefGoogle Scholar
  37. Moffat JF, Zerboni L, Sommer MH, Heineman TC, Cohen JI, Kaneshima H, Arvin AM (1998) The ORF47 and ORF66 putative protein kinases of varicella-zoster virus determine tropism for human T cells and skin in the SCID-hu mouse. Proc Natl Acad Sci USA 95:11969–11974PubMedCrossRefGoogle Scholar
  38. Moriuchi H, Moriuchi M, Smith HA, Straus SE, Cohen JI (1992) Varicella-zoster virus open reading frame 61 protein is functionally homologous to herpes simplex virus type 1 ICP0. J Virol 66:7303–7308PubMedGoogle Scholar
  39. Nagel MA, Gilden D, Shade T, Gao B, Cohrs RJ (2009) Rapid and sensitive detection of 68 unique varicella zoster virus gene transcripts in five multiplex reverse transcription-polymerase chain reactions. J Virol Methods 157:62–68PubMedCrossRefGoogle Scholar
  40. Nagel MA, Choe A, Traktinskiy I, Cordery-Cotter R, Gilden D, Cohrs RJ (2011) Varicella-zoster virus transcriptome in latently infected human ganglia. J Virol 85:2276–2287PubMedCrossRefGoogle Scholar
  41. Niizuma T, Zerboni L, Sommer MH, Ito H, Hinchliffe S, Arvin AM (2003) Construction of varicella-zoster virus recombinants from parent Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol 77:6062–6065PubMedCrossRefGoogle Scholar
  42. Oliver SL, Sommer MH, Reichelt M, Rajamani J, Vlaycheva-Beisheim L, Stamatis S, Cheng J, Jones C, Zehnder J, Arvin AM (2011) Mutagenesis of varicella-zoster virus glycoprotein I (gI) identifies a cysteine residue critical for gE/gI heterodimer formation, gI structure, and virulence in skin cells. J Virol 85:4095–4110PubMedCrossRefGoogle Scholar
  43. Ou Y, Davis KA, Traina-Dorge V, Gray WL (2007) Simian varicella virus expresses a latency-associated transcript that is antisense to open reading frame 61 (ICP0) mRNA in neural ganglia of latently infected monkeys. J Virol 81:8149–8156PubMedCrossRefGoogle Scholar
  44. Oxman MN, Levin MJ, Johnson GR, Schmader KE, Straus SE, Gelb LD, Arbeit RD, Simberkoff MS, Gershon AA, Davis LE, Weinberg A, Boardman KD, Williams HM, Zhang JH, Peduzzi PN, Beisel CE, Morrison VA, Guatelli JC, Brooks PA, Kauffman CA, Pachucki CT, Neuzil KM, Betts RF, Wright PF, Griffin MR, Brunell P, Soto NE, Marques AR, Keay SK, Goodman RP, Cotton DJ, Gnann JW Jr, Loutit J, Holodniy M, Keitel WA, Crawford GE, Yeh SS, Lobo Z, Toney JF, Greenberg RN, Keller PM, Harbecke R, Hayward AR, Irwin MR, Kyriakides TC, Chan CY, Chan IS, Wang WW, Annunziato PW, Silber JL (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 352:2271–2284PubMedCrossRefGoogle Scholar
  45. Pumphrey CY, Gray WL (1992) The genomes of simian varicella virus and varicella zoster virus are colinear. Virus Res 26:255–266PubMedCrossRefGoogle Scholar
  46. Reichelt M, Brady J, Arvin AM (2009) The replication cycle of varicella-zoster virus: analysis of the kinetics of viral protein expression, genome synthesis, and virion assembly at the single-cell level. J Virol 83:3904–3918PubMedCrossRefGoogle Scholar
  47. Ross J, Williams M, Cohen JI (1997) Disruption of the varicella-zoster virus dUTPase and the adjacent ORF9A gene results in impaired growth and reduced syncytia formation in vitro. Virology 234:186–195PubMedCrossRefGoogle Scholar
  48. Sato H, Pesnicak L, Cohen JI (2003) Use of a rodent model to show that varicella-zoster virus ORF61 is dispensable for establishment of latency. J Med Virol 70(Suppl 1):S79–S81PubMedCrossRefGoogle Scholar
  49. Schaap A, Fortin JF, Sommer M, Zerboni L, Stamatis S, Ku CC, Nolan GP, Arvin AM (2005) T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol 79:12921–12933PubMedCrossRefGoogle Scholar
  50. Soike KF, Rangan SR, Gerone PJ (1984) Viral disease models in primates. Adv Vet Sci Comp Med 28:151–199PubMedGoogle Scholar
  51. Sommer MH, Zagha E, Serrano OK, Ku CC, Zerboni L, Baiker A, Santos R, Spengler M, Lynch J, Grose C, Ruyechan W, Hay J, Arvin AM (2001) Mutational analysis of the repeated open reading frames, ORFs 63 and 70 and ORFs 64 and 69, of varicella-zoster virus. J Virol 75:8224–8239PubMedCrossRefGoogle Scholar
  52. Soong W, Schultz JC, Patera AC, Sommer MH, Cohen JI (2000) Infection of human T lymphocytes with varicella-zoster virus: an analysis with viral mutants and clinical isolates. J Virol 74:1864–1870PubMedCrossRefGoogle Scholar
  53. Streblow DN, van Cleef KW, Kreklywich CN, Meyer C, Smith P, Defilippis V, Grey F, Fruh K, Searles R, Bruggeman C, Vink C, Nelson JA, Orloff SL (2007) Rat cytomegalovirus gene expression in cardiac allograft recipients is tissue specific and does not parallel the profiles detected in vitro. J Virol 81:3816–3826PubMedCrossRefGoogle Scholar
  54. Xia D, Srinivas S, Sato H, Pesnicak L, Straus SE, Cohen JI (2003) Varicella-zoster virus open reading frame 21, which is expressed during latency, is essential for virus replication but dispensable for establishment of latency. J Virol 77:1211–1218PubMedCrossRefGoogle Scholar
  55. Zerboni L, Berarducci B, Rajamani J, Jones CD, Zehnder JL, Arvin A (2011) Varicella-zoster virus glycoprotein E is a critical determinant of virulence in the SCID mouse-human model of neuropathogenesis. J Virol 85:98–111PubMedCrossRefGoogle Scholar
  56. Zhang Z, Selariu A, Warden C, Huang G, Huang Y, Zaccheus O, Cheng T, Xia N, Zhu H (2010) Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS Pathog 6:e1000971PubMedCrossRefGoogle Scholar
  57. Zhu L, Weller SK (1988) UL5, a protein required for HSV DNA synthesis: genetic analysis, overexpression in Escherichia coli, and generation of polyclonal antibodies. Virology 166:366–378PubMedCrossRefGoogle Scholar
  58. Zhu LA, Weller SK (1992) The six conserved helicase motifs of the UL5 gene product, a component of the herpes simplex virus type 1 helicase-primase, are essential for its function. J Virol 66:469–479PubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Christine Meyer
    • 1
    • 2
  • Amelia Kerns
    • 1
  • Alex Barron
    • 1
  • Craig Kreklywich
    • 2
    • 4
  • Daniel N. Streblow
    • 1
    • 2
  • Ilhem Messaoudi
    • 1
    • 2
    • 3
    • 5
  1. 1.Vaccine and Gene Therapy InstituteOregon Health and Science UniversityBeavertonUSA
  2. 2.Department of Molecular Microbiology and ImmunologyOregon Health and Science UniversityPortlandUSA
  3. 3.Division of Pathobiology and ImmunologyOregon National Primate Research CenterBeavertonUSA
  4. 4.Department of SurgeryOregon Health and Science UniversityPortlandUSA
  5. 5.Vaccine and Gene Therapy InstituteOregon National Primate Research CenterBeavertonUSA

Personalised recommendations