Journal of NeuroVirology

, Volume 18, Issue 1, pp 12–19 | Cite as

Identification of human herpesviruses 1 to 8 in Tunisian multiple sclerosis patients and healthy blood donors

  • Nadia Ben Fredj
  • Antonella Rotola
  • Faten Nefzi
  • Saber Chebel
  • Roberta Rizzo
  • Elisabetta Caselli
  • Mahbouba Frih-Ayed
  • Dario Di Luca
  • Mahjoub Aouni
Article

Abstract

Members of the human Herpesviridae family are candidates for representing the macroenvironmental factors associated with multiple sclerosis (MS) pathogenesis. To verify the possible role of human herpesviruses (HHVs) as triggering or aggravating factors in relapsing–remitting multiple sclerosis clinical outcome, we studied the prevalence of all eight human herpesviruses in whole blood samples collected from 51 MS patients and from 51 healthy controls. The presence of DNA of herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2), varicella zoster virus (VZV), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), human herpesvirus 6 (HHV-6), human herpesvirus 7 (HHV-7) and human herpesvirus 8 (HHV-8) was searched by specific nested polymerase chain reaction. HHVs were significantly more prevalent in the blood of MS patients than in those of the controls (P < 10−4). HSV-1, HSV-2, HCMV and HHV-8 were negative in both MS patients and controls samples. In MS patients, EBV, HHV-7, HHV-6 and VZV were detected in 31.3%, 33.3%, 5.8% and 7.8% of samples, respectively, compared with 3.9%, 9.8%, 1.96% and 1.96%, respectively, of samples from controls. We found a statistically significant difference only for EBV DNA and for HHV-7 DNA prevalence (P < 0.001 and P = 0.03). Although these results indicate lack of apparent association in terms of gender, type of diagnosis, symptoms, disease score and β interferon treatment between EBV or HHV-7 to MS among Tunisian patients, heterogeneity related to genetic polymorphism as well as geographical distribution of the disease and of pathogens may be of significance.

Keywords

MS Nested PCR EBV HHV-7 Genetic polymorphism 

Notes

Acknowledgements

This work was supported by grants from Federazione Italiana Sclerosi Multipla 2008, Programma Ricerca Regione Università 2007/2009 and Fondi Ateneo per la Ricerca Università di Ferrara.

Conflict of interest

The authors declare that there are no conflicts of interest.

References

  1. Alvarez-Lafuente R, De Las Heras V, Bartolome M, Garcia-Montojo M, Arroyo R (2006) Human herpesvirus 6 and multiple sclerosis: a one-year follow-up study. Brain Pathol 16:20–27PubMedCrossRefGoogle Scholar
  2. Alvarez-Lafuente R, de las Heras V, Garcia-Montojo M, Bartolome M, Arroyo R (2007) Human herpesvirus-6 and multiple sclerosis: relapsing–remitting versus secondary progressive. Mult Scler 13:578–583PubMedCrossRefGoogle Scholar
  3. Âlvarez-Lafuente R, Martín-Estefanía C, De las Heras V, Castrillo C, Cour I, Picazo JJ, Varelade Seijas E, Arroyo R (2002) Prevalence of herpesvirus DNA in MS patients and healthy blood donors. Acta Neurol Scand 105:95–99PubMedCrossRefGoogle Scholar
  4. Bello-Morales R, Fedetz M, Alcina A, Tabares E, Lopez-Guerrero JA (2005) High susceptibility of a human oligodendroglial cell line to herpes simplex type 1 infection. J Neurovirol 11:190–198PubMedCrossRefGoogle Scholar
  5. Cepok S, Zhou D, Srivastava R, Nessler S, Stei S, Bussow K, Sommer N, Hemmer B (2005) Identification of Epstein–Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115:1352–1360PubMedGoogle Scholar
  6. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517PubMedCrossRefGoogle Scholar
  7. Di Luca D, Mirandola P, Ravaioli T, Bigoni B, Cassai E (1996) Distribution of HHV-6 variants in human tissues. Infect Ag Dis 5:203–214Google Scholar
  8. Ferrante P, Omodeo-Zorini E, Zuffolato MR, Mancuso R, Caldarelli-Stefano R, Puricelll S, Mediati M, Losciale I, Caput (1997) Human T-cell lymphotropic virus tax and Epstein–Barr virus DNA in peripheral blood of multiple sclerosis patients during acute attack. Acta Neurol Scand 169:79–85CrossRefGoogle Scholar
  9. Ferrante P, Mancuso R, Pagani E, Guerini FR, Calvo MG, Saresella M, Speciale L, Caputo D (2000) Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. J Neurovirol 6:S109–S114PubMedGoogle Scholar
  10. Gardell JL, Dazin P, Islar J, Menge T, Genai CP, Lalive PH (2006) Apoptotic effects of human herpesvirus-6A on glia and neurons as potential triggers for central nervous system autoimmunity. J Clin Virol 37:S11–S16PubMedCrossRefGoogle Scholar
  11. Giovannoni G, Ebers G (2007) Multiple sclerosis: the environment and causation. Curr Opin Neurol 20:261–268PubMedCrossRefGoogle Scholar
  12. Giovannoni G, Cutter GR, Lunemann J, Martin R, Münz C, Sriram S, Steiner I, Hammerschlag MR, Gaydos CA (2006) Infectious causes of multiple sclerosis. Lancet Neurol 5:887–894PubMedCrossRefGoogle Scholar
  13. Gold R, Hartung HP (2005) Towards individualised multiple sclerosis therapy. Lancet Neurol 4:693–694PubMedCrossRefGoogle Scholar
  14. Haahr S, Koch-Henriksen N, Mùller-Larsen A, Eriksen LS, Andersen HMK (1995) Increased risk of multiple sclerosis after late Epstein–Barr virus infection: a historical prospective study. Mult Scler 1:73–77PubMedGoogle Scholar
  15. Hawkes CH, Giovannoni G, Keir G, Cunnington M, Thompson EJ (2006) Seroprevalence of herpes simplex virus type 2 in multiple sclerosis. Acta Neurol Scand 114:363–367PubMedCrossRefGoogle Scholar
  16. Huang LM, Lee CY, Lee PI, Chen JM, Wang PJ (1991) Meningitis caused by human herpesvirus-6. Arch Dis Child 66:1443–1444PubMedCrossRefGoogle Scholar
  17. Ishiguro N, Yamada S, Takahashi T, Takahashi Y, Togashi T, Okuno T, Yamanishi K (1990) Meningoencephalitis associated with HHV-6 related exanthema subitum. Acta Pediatr Scand 79:987–989CrossRefGoogle Scholar
  18. Kang JH, Sheu JJ, Kao S, Lin HC (2011) Increased risk of multiple sclerosis following herpes zoster: a nationwide, population-based study. J Infect Dis 204:188–192PubMedCrossRefGoogle Scholar
  19. Kim JS, Lee KS, Park JH, Kim MY, Shin WS (2000) Detection of human herpesvirus 6 variant A in peripheral blood mononuclear cells from multiple sclerosis patients. Eur Neurol 43:170–173PubMedCrossRefGoogle Scholar
  20. Lindsey JW, Patel S, Zou J (2008) Epstein–Barr virus genotypes in multiple sclerosis. Acta Neurol Scand 117:141–144PubMedGoogle Scholar
  21. Lindsey JW, Hatfield LM, Crawford MP, Patel S (2009) Quantitative PCR for Epstein–Barr virus DNA and RNA in multiple sclerosis. Mult Scler 15:153–158PubMedCrossRefGoogle Scholar
  22. Lucchinetti C, Brueck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717PubMedCrossRefGoogle Scholar
  23. Lunemann JD, Edwards N, Muraro PA, Hayashi S, Cohen J, Münz C, Martin R (2006) Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain 129:1493–1506PubMedCrossRefGoogle Scholar
  24. Mancuso R, Delbue S, Borghi E, Pagani E, Calvo MG, Caputo D, Granieri E, Ferrante P (2007) Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis. J Med Virol 79:192–199PubMedCrossRefGoogle Scholar
  25. Marrie RA, Wolfson C (2001) Multiple sclerosis and varicella zoster virus infection: a review. Epidemiol Infect 127:315–325PubMedCrossRefGoogle Scholar
  26. Martınez A, Alvarez-Lafuente R, Mas A, Bartolomé M, García-Montojo M, De las Heras V, De la Concha E, Arroyo R, Urcelay E (2007) Environment–gene interaction in multiple sclerosis: human herpesvirus 6 and MHC2TA. Hum Immunol 68:685–689PubMedCrossRefGoogle Scholar
  27. Munch M, Hvas J, Christensen T, Moller-Larsen A, Haahr S (1998a) A single subtype of Epstein–Barr virus in members of multiple sclerosis clusters. Acta Neurol Scand 98:395–399PubMedCrossRefGoogle Scholar
  28. Munch M, Riisom K, Christensen T, Moller-Larsen A, Haahr S (1998b) The significance of Epstein–Barr virus seropositivity in multiple sclerosis patients? Acta Neurol Scand 97:171–174PubMedCrossRefGoogle Scholar
  29. Nielsen TR, Pedersen M, Rostgaard K, Frisch M, Hjalgrim H (2007) Correlations between Epstein–Barr virus antibody levels and risk factors for multiple sclerosis in healthy individuals. Mult Scler 13:420–423PubMedCrossRefGoogle Scholar
  30. Ranger S, Patillaud S, Denis F, Himmich A, Sangare A, M’Boup S, Itoua-N’Gaporo A, Prince-David M, Chout R, Cevallos R, Agut H (1991) Seroepidemiology of human herpesvirus-6 in pregnant women from different parts of the world. J Med Virol 34:194–198PubMedCrossRefGoogle Scholar
  31. Rotola A, Cassai E, Tola MR, Granieri E, Di Luca D (1999) Human herpesvirus 6 is latent in peripheral blood of patients with relapsing–remitting multiple sclerosis. J Neurol Neurosurg Psychiatry 67:529–531PubMedCrossRefGoogle Scholar
  32. Rotola A, Caselli E, Cassai E, Tola MR, Granieri E, Di Luca D (2000) Novel human herpesviruses and multiple sclerosis. J Neurovirol 6:88–91Google Scholar
  33. Soldan SS, Berti R, Salem N, Secchiero P, Flamand L, Calabresi PA, Brennan MB, Maloni HW, Mc Farland HF, Lin HC, Patnaik M, Jacobson S (1997) Association of human herpesvirus type 6 with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3:1394–1397PubMedCrossRefGoogle Scholar
  34. Soldan SS, Leist TP, Juhng KN, McFarland HF, Jacobson S (2000) Increased lymphoproliferative response to human herpesvirus type 6A variant in multiple sclerosis patients. Ann Neurol 47:306–313PubMedCrossRefGoogle Scholar
  35. Sospedra M, Martin R (2005) Immunology of multiple sclerosis. Annu Rev Immunol 23:683–747PubMedCrossRefGoogle Scholar
  36. Sotelo J, Ordonez G, Pineda B (2007) Varicella-zoster virus at relapses of multiple sclerosis. J Neurol 254:493–500PubMedCrossRefGoogle Scholar
  37. Taus C, Pucci E, Cartechini E, Fie A, Giuliani G, Clementi M, Menzo S (2000) Absence of HHV-6 and HHV-7 in cerebrospinal fluid in relapsing–remitting multiple sclerosis. Acta Neurol Scand 101:224–228PubMedCrossRefGoogle Scholar
  38. Tomsone V, Logina I, Millers A, Chapenko S, Kozireva S, Murovska M (2001) Association of human herpesvirus 6 and human herpesvirus 7 with demyelinating diseases of the nervous system. J Neurovirol 7:564–569PubMedCrossRefGoogle Scholar
  39. Zivadinov R, Nasuelli D, Tommasi MA, Serafin M, Bratina A, Ukmar M, Pirko I, Aaron J, Furlan C, Pozzi-Mucelli R, Monti-Bragadin L, Grop A, Zambon M, Rodolfo A, Cazzato G, Zorzon M (2006) Positivity of cytomegalovirus antibodies predicts a better clinical and radiological outcome in multiple sclerosis patients. Neurol Res 28:262–269PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Nadia Ben Fredj
    • 1
  • Antonella Rotola
    • 2
  • Faten Nefzi
    • 1
  • Saber Chebel
    • 3
  • Roberta Rizzo
    • 2
  • Elisabetta Caselli
    • 2
  • Mahbouba Frih-Ayed
    • 3
  • Dario Di Luca
    • 2
  • Mahjoub Aouni
    • 1
  1. 1.Laboratory of Transmissible Diseases and Biological Active substances, LR99-ES27, Faculty of PharmacyUniversity of MonastirMonastirTunisia
  2. 2.Section of Microbiology, Department of Experimental and Diagnostic MedicineUniversity of FerraraFerraraItaly
  3. 3.Department of NeurologyFattouma Bourguiba University HospitalMonastirTunisia

Personalised recommendations