Journal of NeuroVirology

, Volume 17, Issue 4, pp 327–340

Neurotoxic effects of the HCV core protein are mediated by sustained activation of ERK via TLR2 signaling

  • Amy D. Paulino
  • Kiren Ubhi
  • Edward Rockenstein
  • Anthony Adame
  • Leslie Crews
  • Scott Letendre
  • Ronald Ellis
  • Ian P. Everall
  • Igor Grant
  • Eliezer Masliah
Article

Abstract

Hepatitis C virus (HCV) infection is a serious problem among those co-infected with human immunodeficiency virus; however, its impact in the central nervous system (CNS) remains unclear. This study aimed to investigate the mechanisms underlying HCV core protein-mediated neurodegeneration. Analysis of human HCV seropositive cases demonstrated widespread damage to neuronal dendritic processes and sustained activation of extracellular signal-related kinase (ERK); analogous pathologies were observed in wild type injected with HCV core protein into the hippocampus. In vitro analysis in neuronal cells exposed to HCV core demonstrated retraction of the neuronal processes in an ERK/Signal Transducer and Activator of Transcription 3 (STAT3)-dependent manner dependent on toll-like receptor 2 (TLR2) signaling activation. These results indicate that HCV core protein neurotoxicity may be mediated by the sustained activation of ERK/STAT3 via TLR2-IRAK1 signaling pathway. These pathways provide novel targets for development of neuroprotective treatments for HCV involvement of the CNS.

Keywords

HCV TLR2 Neurodegeneration ERK 

Supplementary material

13365_2011_39_MOESM1_ESM.doc (466 kb)
Supplementary Fig. 1Co-immunoprecipitation studies TLR2/IRAK pathway after HCV core exposure. a Immunoprecipitation with the IRAK1 antibody resulted in the detection of TRAF6 by immunoblot only in neuronal cells treated with HCV core compared to vehicle. b Immunoprecipitation with the TRAF6 antibody resulted in the detection of TAB1 by immunoblot (55 kDa band) in neuronal cells treated with HCV core compared to vehicle. c Immunoprecipitation with the TLR2 antibody resulted in the detection of MyD88 by immunoblot only in HCV core-challenged neuronal cells compared to vehicle controls. These effects were not observed in control experiments where the neuronal cells treated with HCV core were immunoprecipitated with a non-specific IgG (DOC 466 kb)
13365_2011_39_MOESM2_ESM.doc (1.7 mb)
Supplementary Fig. 2HCV core protein toxicity in neuronal cells derived from neuronal precursor cells. a β-tubulin and (b) pERK immunoreactivity in vehicle-treated control neuronal cells. c Co-localization of β-tubulin and pERK immunoreactivity in vehicle-treated control neuronal cells. d β-tubulin and (e) pERK immunoreactivity in HCV core-treated neuronal cells. f Co-localization of β-tubulin and pERK immunoreactivity in HCV core-treated neuronal cells. g β-tubulin and (h) pERK immunoreactivity in inactive HCV core-treated neuronal cells. i Co-localization of β-tubulin and pERK immunoreactivity in inactive HCV core-treated neuronal cells. j β-tubulin and (k) pERK immunoreactivity in HCV NS3-treated neuronal cells. l Co-localization of β-tubulin and pERK immunoreactivity in HCV NS3-treated neuronal cells. m Analysis of pERK immunoreactivity across experimental groups. Scale bar = 30 μM. Asterisk indicates p < 0.05 one-way ANOVA with post hoc Fisher. HCV hepatitis C virus, pERK phospho-extracellular signal-related kinase (DOC 1606 kb)

References

  1. Acharya JN, Pacheco VH (2008) Neurologic complications of hepatitis C. Neurologist 14:151–156PubMedCrossRefGoogle Scholar
  2. Akira S, Sato S (2003) Toll-like receptors and their signaling mechanisms. Scand J Infect Dis 35:555–562PubMedCrossRefGoogle Scholar
  3. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511PubMedCrossRefGoogle Scholar
  4. Annunziata P, Marroni M, Francisci D, Stagni G (2005) Acute transverse myelitis and hepatitis C virus. Infez Med 13:45–47PubMedGoogle Scholar
  5. Bartosch B, Cosset FL (2006) Cell entry of hepatitis C virus. Virology 348:1–12PubMedCrossRefGoogle Scholar
  6. Blackard JT, Sherman KE (2008) HCV/HIV co-infection: time to re-evaluate the role of HIV in the liver? J Viral Hepat 15:323–330PubMedCrossRefGoogle Scholar
  7. Chang S, Dolganiuc A, Szabo G (2007) Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82:479–487PubMedCrossRefGoogle Scholar
  8. Chevaliez S, Pawlotsky J (2006) HCV genome and life cycle. In: Tan S-L (ed) Hepatitis C viruses genomes and molecular biology. Horizon Bioscience, Norfolk, pp 5–47Google Scholar
  9. Cocquerel L, Voisset C, Dubuisson J (2006) Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol 87:1075–1084PubMedCrossRefGoogle Scholar
  10. Crack PJ, Bray PJ (2007) Toll-like receptors in the brain and their potential roles in neuropathology. Immunol Cell Biol 85:476–480PubMedCrossRefGoogle Scholar
  11. Crews L, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Modulation of aberrant CDK5 signaling rescues impaired neurogenesis in models of Alzheimer's disease. Cell Death Dis 2:e120PubMedCrossRefGoogle Scholar
  12. Dolganiuc A, Oak S, Kodys K, Golenbock DT, Finberg RW, Kurt-Jones E, Szabo G (2004) Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 2-mediated pathways and inflammatory activation. Gastroenterology 127:1513–1524PubMedCrossRefGoogle Scholar
  13. Erhardt A, Hassan M, Heintges T, Haussinger D (2002) Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology 292:272–284PubMedCrossRefGoogle Scholar
  14. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805PubMedCrossRefGoogle Scholar
  15. Fierer DS, Uriel AJ, Carriero DC, Klepper A, Dieterich DT, Mullen MP, Thung SN, Fiel MI, Branch AD (2008) Liver fibrosis during an outbreak of acute hepatitis C virus infection in HIV-infected men: a prospective cohort study. J Infect Dis 198:683–686PubMedCrossRefGoogle Scholar
  16. Forton DM, Allsop JM, Main J, Foster GR, Thomas HC, Taylor-Robinson SD (2001) Evidence for a cerebral effect of the hepatitis C virus. Lancet 358:38–39PubMedCrossRefGoogle Scholar
  17. Forton DM, Karayiannis P, Mahmud N, Taylor-Robinson SD, Thomas HC (2004a) Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. J Virol 78:5170–5183PubMedCrossRefGoogle Scholar
  18. Forton DM, Thomas HC, Taylor-Robinson SD (2004b) Central nervous system involvement in hepatitis C virus infection. Metab Brain Dis 19:383–391PubMedCrossRefGoogle Scholar
  19. Fujita H, Chuganji Y, Yaginuma M, Momoi M, Tanaka T (1999) Case report: acute encephalitis immediately prior to acute onset of hepatitis C virus infection. J Gastroenterol Hepatol 14:1129–1131PubMedCrossRefGoogle Scholar
  20. Gonzalez R, Cherner M (2008) Co-factors in HIV neurobehavioural disturbances: substance abuse, hepatitis C and aging. Int Rev Psychiatry 20:49–60PubMedCrossRefGoogle Scholar
  21. Gottipati S, Rao NL, Fung-Leung WP (2008) IRAK1: a critical signaling mediator of innate immunity. Cell Signal 20:269–276PubMedCrossRefGoogle Scholar
  22. Hayashi J, Aoki H, Kajino K, Moriyama M, Arakawa Y, Hino O (2000) Hepatitis C virus core protein activates the MAPK/ERK cascade synergistically with tumor promoter TPA, but not with epidermal growth factor or transforming growth factor alpha. Hepatology 32:958–961PubMedCrossRefGoogle Scholar
  23. Hilsabeck RC, Castellon SA, Hinkin CH (2005) Neuropsychological aspects of coinfection with HIV and hepatitis C virus. Clin Infect Dis 41:S38–S44PubMedCrossRefGoogle Scholar
  24. Hu X, Chen J, Wang L, Ivashkiv LB (2007) Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation. J Leukoc Biol 82:237–243PubMedCrossRefGoogle Scholar
  25. Huang Y, Li T, Sane DC, Li L (2004) IRAK1 serves as a novel regulator essential for lipopolysaccharide-induced interleukin-10 gene expression. J Biol Chem 279:51697–51703PubMedCrossRefGoogle Scholar
  26. Kang S-M, Choi J-K, Kim S-J, Kim J-H, Ahn D-G, Oh J-W (2009) Regulation of hepatitis C virus replication by the core protein through its interaction with viral RNA polymerase. Biochem Biophys Res Commun 386:55–59PubMedCrossRefGoogle Scholar
  27. Kirschning CJ, Schumann RR (2002) TLR2: cellular sensor for microbial and endogenous molecular patterns. Curr Top Microbiol Immunol 270:121–144PubMedGoogle Scholar
  28. Kopp E, Medzhitov R (2003) Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 15:396–401PubMedCrossRefGoogle Scholar
  29. Laskus T, Radkowski M, Bednarska A, Wilkinson J, Adair D, Nowicki M, Nikolopoulou GB, Vargas H, Rakela J (2002) Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. J Virol 76:10064–10068PubMedCrossRefGoogle Scholar
  30. Laskus T, Radkowski M, Adair DM, Wilkinson J, Scheck AC, Rakela J (2005) Emerging evidence of hepatitis C virus neuroinvasion. AIDS 19(Suppl 3):S140–S144PubMedCrossRefGoogle Scholar
  31. Letendre SL, Cherner M, Ellis RJ, Marquie-Beck J, Gragg B, Marcotte T, Heaton RK, McCutchan JA, Grant I (2005) The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: biological correlates of disease. AIDS 19(Suppl 3):S72–S78PubMedCrossRefGoogle Scholar
  32. Letendre S, Paulino AD, Rockenstein E, Adame A, Crews L, Cherner M, Heaton R, Ellis R, Everall IP, Grant I, Masliah E (2007) Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis 196:361–370PubMedCrossRefGoogle Scholar
  33. Maggi F, Giorgi M, Fornai C, Morrica A, Vatteroni ML, Pistello M, Siciliano G, Nuccorini A, Bendinelli M (1999) Detection and quasispecies analysis of hepatitis C virus in the cerebrospinal fluid of infected patients. J Neurovirol 5:319–323PubMedCrossRefGoogle Scholar
  34. Martin-Thormeyer E, Paul R (2009) Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: neurocognitive and neuroimaging features. Neuropsychol Rev 19:215–231PubMedCrossRefGoogle Scholar
  35. McLauchlan J (2000) Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7:2–14PubMedCrossRefGoogle Scholar
  36. Morgello S, Estanislao L, Ryan E, Gerits P, Simpson D, Verma S, DiRocco A, Sharp V (2005) Effects of hepatic function and hepatitis C virus on the nervous system assessment of advanced-stage HIV-infected individuals. AIDS 19(Suppl 3):S116–S122PubMedCrossRefGoogle Scholar
  37. Nagyoszi P, Wilhelm I, Farkas AE, Fazakas C, Dung NT, Hasko J, Krizbai IA (2010) Expression and regulation of toll-like receptors in cerebral endothelial cells. Neurochem Int 57:556–564PubMedCrossRefGoogle Scholar
  38. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, Cao X (2006) Stat3 regulates microtubules by antagonizing the depolymerization activity of stathmin. J Cell Biol 172:245–257PubMedCrossRefGoogle Scholar
  39. Okun E, Griffioen KJ, Son TG, Lee JH, Roberts NJ, Mughal MR, Hutchison E, Cheng A, Arumugam TV, Lathia JD, van Praag H, Mattson MP (2010) TLR2 activation inhibits embryonic neural progenitor cell proliferation. J Neurochem 114:462–474PubMedGoogle Scholar
  40. Polyak S, Klein K, Shoji I, Miyamura T, Lingappa J (2006) Assemble and interact: pleiotropic functions of the HCV core protein. In: Tan S-L (ed) Hepatits C viruses genomes and molecular biology. Horizon Bioscience, Norfolk, pp 267–292Google Scholar
  41. Radkowski M, Wilkinson J, Nowicki M, Adair D, Vargas H, Ingui C, Rakela J, Laskus T (2002) Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: evidence of replication. J Virol 76:600–608PubMedCrossRefGoogle Scholar
  42. Ray RB, Ray R (2001) Hepatitis C virus core protein: intriguing properties and functional relevance. FEMS Microbiol Lett 202:149–156PubMedCrossRefGoogle Scholar
  43. Richardson JL, Nowicki M, Danley K, Martin EM, Cohen MH, Gonzalez R, Vassileva J, Levine AM (2005) Neuropsychological functioning in a cohort of HIV- and hepatitis C virus-infected women. AIDS 19:1659–1667PubMedCrossRefGoogle Scholar
  44. Ryan EL, Morgello S, Isaacs K, Naseer M, Gerits P (2004) Neuropsychiatric impact of hepatitis C on advanced HIV. Neurology 62:957–962PubMedGoogle Scholar
  45. Sarcar B, Ghosh AK, Steele R, Ray R, Ray RB (2004) Hepatitis C virus NS5A mediated STAT3 activation requires co-operation of Jak1 kinase. Virology 322:51–60PubMedCrossRefGoogle Scholar
  46. Sato K, Ishikawa T, Okumura A, Yamauchi T, Sato S, Ayada M, Matsumoto E, Hotta N, Oohashi T, Fukuzawa Y, Kakumu S (2007) Expression of Toll-like receptors in chronic hepatitis C virus infection. J Gastroenterol Hepatol 22:1627–1632PubMedCrossRefGoogle Scholar
  47. Seifert F, Struffert T, Hildebrandt M, Blumcke I, Bruck W, Staykov D, Huttner HB, Hilz MJ, Schwab S, Bardutzky J (2008) In vivo detection of hepatitis C virus (HCV) RNA in the brain in a case of encephalitis: evidence for HCV neuroinvasion. Eur J Neurol 15:214–218PubMedCrossRefGoogle Scholar
  48. Shingu K, Kruschinski C, Luhrmann A, Grote K, Tschernig T, Von Horsten S, Pabst R (2003) Intratracheal macrophage-activating lipopeptide-2 reduces metastasis in the rat lung. Am J Respir Cell Mol Biol 28:316–321PubMedCrossRefGoogle Scholar
  49. Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138:1055–1065PubMedCrossRefGoogle Scholar
  50. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9PubMedCrossRefGoogle Scholar
  51. Vargas HE, Laskus T, Radkowski M, Wilkinson J, Balan V, Douglas DD, Harrison ME, Mulligan DC, Olden K, Adair D, Rakela J (2002) Detection of hepatitis C virus sequences in brain tissue obtained in recurrent hepatitis C after liver transplantation. Liver Transplant 8:1014–1019CrossRefGoogle Scholar
  52. Wang B, Gao Y, Xiao Z, Chen B, Han J, Zhang J, Wang X, Dai J (2009) Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neurosci Lett 461:252–257PubMedCrossRefGoogle Scholar
  53. Weissenborn K, Tryc AB, Heeren M, Worthmann H, Pflugrad H, Berding G, Bokemeyer M, Tillmann HL, Goldbecker A (2009) Hepatitis C virus infection and the brain. Metab Brain Dis 24:197–210PubMedCrossRefGoogle Scholar
  54. Wilkinson J, Radkowski M, Laskus T (2009) Hepatitis C virus neuroinvasion: identification of infected cells. J Virol 83:1312–1319PubMedCrossRefGoogle Scholar
  55. Yang W, Hood BL, Chadwick SL, Liu S, Watkins SC, Luo G, Conrads TP, Wang T (2008) Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology 48:1396–1403PubMedCrossRefGoogle Scholar
  56. Yeh HH, Wu CH, Giri R, Kato K, Kohno K, Izumi H, Chou CY, Su WC, Liu HS (2008) Oncogenic Ras-induced morphologic change is through MEK/ERK signaling pathway to downregulate Stat3 at a posttranslational level in NIH3T3 cells. Neoplasia 10:52–60PubMedCrossRefGoogle Scholar
  57. Yoshida T, Hanada T, Tokuhisa T, Kosai K, Sata M, Kohara M, Yoshimura A (2002) Activation of STAT3 by the hepatitis C virus core protein leads to cellular transformation. J Exp Med 196:641–653PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Amy D. Paulino
    • 1
    • 6
  • Kiren Ubhi
    • 1
  • Edward Rockenstein
    • 1
  • Anthony Adame
    • 1
  • Leslie Crews
    • 2
  • Scott Letendre
    • 3
  • Ronald Ellis
    • 1
  • Ian P. Everall
    • 4
    • 7
  • Igor Grant
    • 4
    • 5
  • Eliezer Masliah
    • 1
    • 2
  1. 1.Department of NeurosciencesUniversity of California San DiegoLa JollaUSA
  2. 2.Department of PathologyUniversity of California San DiegoLa JollaUSA
  3. 3.Department of MedicineUniversity of California San DiegoLa JollaUSA
  4. 4.Department of Psychiatry and the HIV Neurobehavioral Research CenterUniversity of California San DiegoLa JollaUSA
  5. 5.Veterans Affairs Healthcare SystemLa JollaUSA
  6. 6.Neuropore Therapies Inc.San DiegoUSA
  7. 7.Department of PsychiatryUniversity of Melbourne, Level 1 North, Royal Melbourne HospitalMelbourneAustralia

Personalised recommendations