Advertisement

Journal of NeuroVirology

, 17:368 | Cite as

Regional areas and widths of the midsagittal corpus callosum among HIV-infected patients on stable antiretroviral therapies

  • David F. TateEmail author
  • Mehul Sampat
  • Jaroslaw Harezlak
  • Mark Fiecas
  • Joseph Hogan
  • Jeffrey Dewey
  • Daniel McCaffrey
  • Daniel Branson
  • Troy Russell
  • Jared Conley
  • Michael Taylor
  • Giavoni Schifitto
  • J. Zhong
  • Eric S. Daar
  • Jeffrey Alger
  • Mark Brown
  • Elyse Singer
  • T. Campbell
  • D. McMahon
  • Y. Tso
  • Janetta Matesan
  • Scott Letendre
  • S. Paulose
  • Michelle Gaugh
  • C. Tripoli
  • Constantine Yiannoutsos
  • Erin D. Bigler
  • Ronald A. Cohen
  • Charles R. G. Guttmann
  • Bradford NaviaEmail author
  • for the HIV Neuroimaging Consortium
Article

Abstract

Recent reports suggest that a growing number of human immunodeficiency virus (HIV)-infected persons show signs of persistent cognitive impairment even in the context of combination antiretroviral therapies (cART). The basis for this finding remains poorly understood as there are only a limited number of studies examining the relationship between CNS injury, measures of disease severity, and cognitive function in the setting of stable disease. This study examined the effects of HIV infection on cerebral white matter using quantitative morphometry of the midsagittal corpus callosum (CC) in 216 chronically infected participants from the multisite HIV Neuroimaging Consortium study currently receiving cART and 139 controls. All participants underwent MRI assessment, and HIV-infected subjects also underwent measures of cognitive function and disease severity. The midsagittal slice of the CC was quantified using two semi-automated procedures. Group comparisons were accomplished using ANOVA, and the relationship between CC morphometry and clinical covariates (current CD4, nadir CD4, plasma and CSF HIV RNA, duration of HIV infection, age, and ADC stage) was assessed using linear regression models. HIV-infected patients showed significant reductions in both the area and linear widths for several regions of the CC. Significant relationships were found with ADC stage and nadir CD4 cell count, but no other clinical variables. Despite effective treatment, significant and possibly irreversible structural loss of the white matter persists in the setting of chronic HIV disease. A history of advanced immune suppression is a strong predictor of this complication and suggests that antiretroviral intervention at earlier stages of infection may be warranted.

Keywords

HIV Corpus callosum Nadir CD4 White matter CART 

Notes

Acknowledgments

We gratefully acknowledge the use of imaging data from the following HIV MRS Consortium sites: University of California San Diego, University of California Los Angeles (UCLA), Harbor UCLA Medical Center, Stanford University, Rochester Medical Center, University of Colorado Science Center, and University of Pittsburgh. We also gratefully acknowledge the use of imaging data of typically aging individuals from the laboratory of Erin D. Bigler. We also acknowledge the volunteer assistance of Stella Barth, Molly Siegel, Bessie Liu, Kelsey Han, and Alissa D’Gama. This publication was supported by the following: National Institutes of Health grants R01NS 35524, T32DA13911, RO1AI38855, RO1MH60565, RO1MH65857, RO1DA15045, RO1NS38841, and 1UO1MH083500; National Institute of Mental Health grant K23-MH073416 to DFT; and the AIDS Clinical Trials Group (NIAID).

References

  1. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27:86–92PubMedCrossRefGoogle Scholar
  2. Anthony IC, Bell JE (2008) The neuropathology of HIV/AIDS. Int Rev Psychiatry 20:15–24PubMedCrossRefGoogle Scholar
  3. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, Clifford DB, Cinque P, Epstein LG, Goodkin K, Gisslen M, Grant I, Heaton RK, Joseph J, Marder K, Marra CM, McArthur JC, Nunn M, Price RW, Pulliam L, Robertson KR, Sacktor N, Valcour V, Wojna VE (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799PubMedCrossRefGoogle Scholar
  4. Archibald SL, Masliah E, Fennema-Notestine C, Marcotte TD, Ellis RJ, McCutchan JA, Heaton RK, Grant I, Mallory M, Miller A, Jernigan TL (2004) Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. Arch Neurol 61:369–376PubMedCrossRefGoogle Scholar
  5. Aylward EH, Brettschneider PD, McArthur JC, Harris GJ, Schlaepfer TE, Henderer JD, Barta PE, Tien AY, Pearlson GD (1995) Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. Am J Psychiatry 152:987–994PubMedGoogle Scholar
  6. Bigler ED, Blatter DD, Johnson SC, Anderson CV, Russo AA, Gale SD, Ryser DK, MacNamara SE, Bailey BJ (1996) Traumatic brain injury, alcohol and quantitative neuroimaging: preliminary findings. Brain Inj 10:197–206PubMedCrossRefGoogle Scholar
  7. Bigler ED, Johnson SC, Blatter DD (1999) Head trauma and intellectual status: relation to quantitative magnetic resonance imaging findings. Appl Neuropsychol 6:217–225PubMedCrossRefGoogle Scholar
  8. Cardenas VA, Meyerhoff DJ, Studholme C, Kornak J, Rothlind J, Lampiris H, Neuhaus J, Grant RM, Chao LL, Truran D, Weiner MW (2009) Evidence for ongoing brain injury in human immunodeficiency virus-positive patients treated with antiretroviral therapy. J Neurovirol 15:324–333PubMedCrossRefGoogle Scholar
  9. Chang L, Lee PL, Yiannoutsos CT, Ernst T, Marra CM, Richards T, Kolson D, Schifitto G, Jarvik JG, Miller EN, Lenkinski R, Gonzalez G, Navia BA (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23:1336–1347PubMedCrossRefGoogle Scholar
  10. Chen Y, An H, Zhu H, Stone T, Smith JK, Hall C, Bullitt E, Shen D, Lin W (2009) White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients. Neuroimage 47:1154–1162PubMedCrossRefGoogle Scholar
  11. Chiang MC, Dutton RA, Hayashi KM, Lopez OL, Aizenstein HJ, Toga AW, Becker JT, Thompson PM (2007) 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage 34:44–60PubMedCrossRefGoogle Scholar
  12. Cohen RA, Harezlak J, Gongvatana A, Buchthal S, Schifitto G, Clark U, Paul R, Taylor M, Thompson P, Tate D, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B; HIV Neuroimaging Consortium (2010a) Cerebral metabolite abnormalities in human immunodeficiency virus are associated with cortical and subcortical volumes. J Neurovirol 16(6):435–444PubMedGoogle Scholar
  13. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, Paul R, Taylor M, Thompson P, Alger J, Brown M, Zhong J, Campbell T, Singer E, Daar E, McMahon D, Tso Y, Yiannoutsos CT, Navia B (2010b) Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol 16:25–32PubMedCrossRefGoogle Scholar
  14. Cysique LA, Letendre SL, Ake C, Jin H, Franklin DR, Gupta S, Shi C, Yu X, Wu Z, Abramson IS, Grant I, Heaton RK (2010) Incidence and nature of cognitive decline over 1 year among HIV-infected former plasma donors in China. AIDS 24:983–990PubMedCrossRefGoogle Scholar
  15. D’Amico R, Yang Y, Mildvan D, Evans SR, Schnizlein-Bick CT, Hafner R, Webb N, Basar M, Zackin R, Jacobson MA (2005) Lower CD4+ T lymphocyte nadirs may indicate limited immune reconstitution in HIV-1 infected individuals on potent antiretroviral therapy: analysis of immunophenotypic marker results of AACTG 5067. J Clin Immunol 25:106–115PubMedCrossRefGoogle Scholar
  16. Dale A, Fischl B, Sereno M (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194PubMedCrossRefGoogle Scholar
  17. Denenberg VH, Cowell PE, Fitch RH, Kertesz A, Kenner GH (1991) Corpus callosum: multiple parameter measurements in rodents and humans. Physiol Behav 49:433–437PubMedCrossRefGoogle Scholar
  18. Di Sclafani V, Mackay RD, Meyerhoff DJ, Norman D, Weiner MW, Fein G (1997) Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. J Int Neuropsychol Soc 3:276–287PubMedGoogle Scholar
  19. Emery S, Neuhaus JA, Phillips AN, Babiker A, Cohen CJ, Gatell JM, Girard PM, Grund B, Law M, Losso MH, Palfreeman A, Wood R (2008) Major clinical outcomes in antiretroviral therapy (ART)-naive participants and in those not receiving ART at baseline in the SMART study. J Infect Dis 197:1133–1144PubMedCrossRefGoogle Scholar
  20. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer E, Campbell T, Yiannoutsos C, Cohen R, Navia B, the HIV Neuroimaging Consortium (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25(5):625–633PubMedCrossRefGoogle Scholar
  21. Hult B, Chana G, Masliah E, Everall I (2008) Neurobiology of HIV. Int Rev Psychiatry 20:3–13PubMedCrossRefGoogle Scholar
  22. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD, Heaton RK, Ellis RJ, Grant I (2005) Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry 162:1461–1472PubMedCrossRefGoogle Scholar
  23. Kochunov P, Lancaster J, Hardies J, Thompson PM, Woods RP, Cody JD, Hale DE, Laird A, Fox PT (2005) Mapping structural differences of the corpus callosum in individuals with 18q deletions using targetless regional spatial normalization. Hum Brain Mapp 24:325–331PubMedCrossRefGoogle Scholar
  24. Laird N, Donnelly C, Ware J (1992) Longitudinal studies with continuous response. Stat Meth Med Res 1:3–25CrossRefGoogle Scholar
  25. Levy R, Bredesen D (1988) Central nervous system dysfunction in acquired immunodeficiency syndrome. JAIDS J Acquir Immune Defic Syndr 1:41Google Scholar
  26. McArthur JC, Haughey N, Gartner S, Conant K, Pardo C, Nath A, Sacktor N (2003) Human immunodeficiency virus-associated dementia: an evolving disease. J Neurovirol 9:205–221PubMedGoogle Scholar
  27. McArthur JC, McDermott MP, McClernon D, St Hillaire C, Conant K, Marder K, Schifitto G, Selnes OA, Sacktor N, Stern Y, Albert SM, Kieburtz K, deMarcaida JA, Cohen B, Epstein LG (2004) Attenuated central nervous system infection in advanced HIV/AIDS with combination antiretroviral therapy. Arch Neurol 61:1687–1696PubMedCrossRefGoogle Scholar
  28. McCutchan JA, Wu JW, Robertson K, Koletar SL, Ellis RJ, Cohn S, Taylor M, Woods S, Heaton R, Currier J, Williams PL (2007) HIV suppression by HAART preserves cognitive function in advanced, immune-reconstituted AIDS patients. AIDS 21:1109–1117PubMedCrossRefGoogle Scholar
  29. Munoz-Moreno JA, Fumaz CR, Ferrer MJ, Prats A, Negredo E, Garolera M, Perez-Alvarez N, Molto J, Gomez G, Clotet B (2008) Nadir CD4 cell count predicts neurocognitive impairment in HIV-infected patients. AIDS Res Hum Retroviruses 24:1301–1307PubMedCrossRefGoogle Scholar
  30. Navia B, Price R (1987) The acquired immunodeficiency syndrome dementia complex as the presenting or sole manifestation of human immunodeficiency virus infection. Arch Neurol 44:65PubMedGoogle Scholar
  31. Navia B, Cho E, Petito C, Price R (1986) The AIDS dementia complex: II neuropathology. Ann Neurol 19:525–535PubMedCrossRefGoogle Scholar
  32. Paul R, Cohen R, Navia B, Tashima K (2002) Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev 26:353–359PubMedCrossRefGoogle Scholar
  33. Pfefferbaum A, Rosenbloom M, Sullivan EV (2002) Alcoholism and AIDS: magnetic resonance imaging approaches for detecting interactive neuropathology. Alcohol Clin Exp Res 26:1031–1046PubMedCrossRefGoogle Scholar
  34. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Adalsteinsson E, Kemper CA, Deresinski S, Sullivan EV (2006) Contribution of alcoholism to brain dysmorphology in HIV infection: effects on the ventricles and corpus callosum. Neuroimage 33:239–251PubMedCrossRefGoogle Scholar
  35. Pfefferbaum A, Rosenbloom MJ, Adalsteinsson E, Sullivan EV (2007) Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: synergistic white matter damage. Brain 130:48–64PubMedCrossRefGoogle Scholar
  36. Pfefferbaum A, Rosenbloom MJ, Rohlfing T, Kemper CA, Deresinski S, Sullivan EV (2009) Frontostriatal fiber bundle compromise in HIV infection without dementia. AIDS 23:1977–1985PubMedCrossRefGoogle Scholar
  37. Price RW, Brew B, Sidtis J, Rosenblum M, Scheck AC, Cleary P (1988) The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239:586–592PubMedCrossRefGoogle Scholar
  38. R Development Core Team (2011) R: a language and environment for statistical computing. R Development Core Team, Vienna, http://www.R-project.org Google Scholar
  39. Ragin AB, Storey P, Cohen BA, Epstein LG, Edelman RR (2004) Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. AJNR Am J Neuroradiol 25:195–200PubMedGoogle Scholar
  40. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG (2005) Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. J Neurovirol 11:292–298PubMedCrossRefGoogle Scholar
  41. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ (2007) The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS 21:1915–1921PubMedCrossRefGoogle Scholar
  42. Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL, Hedreen JC, Navia BA (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 46:207–216PubMedCrossRefGoogle Scholar
  43. Sacktor N, McDermott MP, Marder K, Schifitto G, Selnes OA, McArthur JC, Stern Y, Albert S, Palumbo D, Kieburtz K, De Marcaida JA, Cohen B, Epstein L (2002) HIV-associated cognitive impairment before and after the advent of combination therapy. J Neurovirol 8:136–142PubMedCrossRefGoogle Scholar
  44. Sacktor N, Skolasky RL, Ernst T, Mao X, Selnes O, Pomper MG, Chang L, Zhong K, Shungu DC, Marder K, Shibata D, Schifitto G, Bobo L, Barker PB (2005) A multicenter study of two magnetic resonance spectroscopy techniques in individuals with HIV dementia. J Magn Reson Imaging 21:325–333PubMedCrossRefGoogle Scholar
  45. Sampat MP, Jesrani P, Meier DS, Guttmann CR (2009) Quantification of callosal widths using conformal mapping: application to multiple sclerosis. International Society for Magnetic Resonance in Medicine, HawaiiGoogle Scholar
  46. Sander C, Sampat MP, Berger A, Meier DS, Guttmann CR (2008) Functional correlates of corpus callosum thickness in multiple sclerosis. International Society for Magnetic Resonance in Medicine, TorontoGoogle Scholar
  47. Sterne JA, May M, Costagliola D, de Wolf F, Phillips AN, Harris R, Funk MJ, Geskus RB, Gill J, Dabis F, Miro JM, Justice AC, Ledergerber B, Fatkenheuer G, Hogg RS, Monforte AD, Saag M, Smith C, Staszewski S, Egger M, Cole SR (2009) Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet 373:1352–1363PubMedCrossRefGoogle Scholar
  48. Stout JC, Ellis RJ, Jernigan TL, Archibald SL, Abramson I, Wolfson T, McCutchan JA, Wallace MR, Atkinson JH, Grant I (1998) Progressive cerebral volume loss in human immunodeficiency virus infection: a longitudinal volumetric magnetic resonance imaging study. HIV Neurobehavioral Research Center Group. Arch Neurol 55:161–168PubMedCrossRefGoogle Scholar
  49. Sullivan EV, Pfefferbaum A (2003) Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 45:244–255PubMedCrossRefGoogle Scholar
  50. Tate DF, Conley J, Paul RH, Coop K, Zhang S, Zhou W, Laidlaw DH, Taylor LE, Flanigan T, Navia B, Cohen R, Tashima K (2010) Quantitative diffusion tensor imaging tractography metrics are associated with cognitive performance among HIV-infected patients. Brain Imaging Behav 4:68–79PubMedCrossRefGoogle Scholar
  51. Thompson PM, Dutton RA, Hayashi KM, Toga AW, Lopez OL, Aizenstein HJ, Becker JT (2005) Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline. Proc Natl Acad Sci USA 102:15647–15652PubMedCrossRefGoogle Scholar
  52. Thompson PM, Dutton RA, Hayashi KM, Lu A, Lee SE, Lee JY, Lopez OL, Aizenstein HJ, Toga AW, Becker JT (2006) 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage 31:12–23PubMedCrossRefGoogle Scholar
  53. Valcour V, Yee P, Williams AE, Shiramizu B, Watters M, Selnes O, Paul R, Shikuma C, Sacktor N (2006) Lowest ever CD4 lymphocyte count (CD4 nadir) as a predictor of current cognitive and neurological status in human immunodeficiency virus type 1 infection—The Hawaii Aging with HIV Cohort. J Neurovirol 12:387–391PubMedCrossRefGoogle Scholar
  54. Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum. A postmortem morphological study. Brain 112(Pt 3):799–835PubMedCrossRefGoogle Scholar
  55. Wohlschlaeger J, Wenger E, Mehraein P, Weis S (2009) White matter changes in HIV-1 infected brains: a combined gross anatomical and ultrastructural morphometric investigation of the corpus callosum. Clin Neurol Neurosurg 111:422–429PubMedCrossRefGoogle Scholar
  56. Wu Y, Storey P, Cohen BA, Epstein LG, Edelman RR, Ragin AB (2006) Diffusion alterations in corpus callosum of patients with HIV. AJNR Am J Neuroradiol 27:656–660PubMedGoogle Scholar
  57. Yiannoutsos CT, Ernst T, Chang L, Lee PL, Richards T, Marra CM, Meyerhoff DJ, Jarvik JG, Kolson D, Schifitto G, Ellis RJ, Swindells S, Simpson DM, Miller EN, Gonzalez RG, Navia BA (2004) Regional patterns of brain metabolites in AIDS dementia complex. Neuroimage 23:928–935PubMedCrossRefGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • David F. Tate
    • 1
    • 2
    • 15
    Email author
  • Mehul Sampat
    • 1
  • Jaroslaw Harezlak
    • 3
  • Mark Fiecas
    • 4
  • Joseph Hogan
    • 4
  • Jeffrey Dewey
    • 1
  • Daniel McCaffrey
    • 1
  • Daniel Branson
    • 1
  • Troy Russell
    • 1
  • Jared Conley
    • 1
  • Michael Taylor
    • 5
  • Giavoni Schifitto
    • 6
  • J. Zhong
    • 6
  • Eric S. Daar
    • 7
  • Jeffrey Alger
    • 8
  • Mark Brown
    • 9
  • Elyse Singer
    • 8
  • T. Campbell
    • 9
  • D. McMahon
    • 10
  • Y. Tso
    • 11
  • Janetta Matesan
    • 3
  • Scott Letendre
    • 5
  • S. Paulose
    • 11
  • Michelle Gaugh
    • 6
  • C. Tripoli
    • 10
  • Constantine Yiannoutsos
    • 3
  • Erin D. Bigler
    • 12
  • Ronald A. Cohen
    • 13
  • Charles R. G. Guttmann
    • 1
  • Bradford Navia
    • 14
    • 16
    Email author
  • for the HIV Neuroimaging Consortium
  1. 1.Departments of Radiology and Psychiatry, Center for Neurological Imaging, The Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Department of Neurology, Alzheimer’s Disease CenterBoston University Medical CenterBostonUSA
  3. 3.Indiana University School of MedicineIndianapolisUSA
  4. 4.Department of BiostatisticsBrown UniversityProvidenceUSA
  5. 5.University of California, San DiegoSan DiegoUSA
  6. 6.University of Rochester Medical CenterRochesterUSA
  7. 7.University of California Los Angeles/HarborTorranceUSA
  8. 8.University of California Los AngelesLos AngelesUSA
  9. 9.University of ColoradoDenverUSA
  10. 10.University of PittsburghPittsburghUSA
  11. 11.Stanford UniversityPalo AltoUSA
  12. 12.Departments of Psychology and NeuroscienceBrigham Young UniversityProvoUSA
  13. 13.Brown Medical SchoolThe Miriam HospitalProvidenceUSA
  14. 14.Departments of Neurology and PsychiatryTufts-New England Medical CenterBostonUSA
  15. 15.Department of Neurology, Henry M. Jackson Foundation, Defense & Veterans Brain Injury CenterSan Antonio Military Medical CenterSan AntonioUSA
  16. 16.Department of Public Health, Jaharis Family Center for Biomedical ResearchTufts Medical SchoolBostonUSA

Personalised recommendations