Journal of NeuroVirology

, Volume 17, Issue 1, pp 92–109 | Cite as

Development of co-selected single nucleotide polymorphisms in the viral promoter precedes the onset of human immunodeficiency virus type 1-associated neurocognitive impairment

  • Luna Li
  • Benjamas Aiamkitsumrit
  • Vanessa Pirrone
  • Michael R. Nonnemacher
  • Adam Wojno
  • Shendra Passic
  • Katherine Flaig
  • Evelyn Kilareski
  • Brandon Blakey
  • Jade Ku
  • Nirzari Parikh
  • Rushabh Shah
  • Julio Martin-Garcia
  • Brian Moldover
  • Laila Servance
  • David Downie
  • Sharon Lewis
  • Jeffrey M. Jacobson
  • Dennis Kolson
  • Brian Wigdahl
Article

Abstract

The long terminal repeat (LTR) regulates gene expression of HIV-1 by interacting with multiple host and viral factors. Cross-sectional studies in the pre-HAART era demonstrated that single nucleotide polymorphisms (SNPs) in peripheral blood-derived LTRs (a C-to-T change at position 3 of C/EBP site I (3T) and at position 5 of Sp site III (5T)) increased in frequency as disease severity increased. Additionally, the 3T variant correlated with HIV-1-associated dementia. LTR sequences derived by longitudinal sampling of peripheral blood from a single patient in the DrexelMed HIV/AIDS Genetic Analysis Cohort resulted in the detection of the 3T and 5T co-selected SNPs before the onset of neurologic impairment, demonstrating that these SNPs may be useful in predicting HIV-associated neurological complications. The relative fitness of the LTRs containing the 3T and/or 5T co-selected SNPs as they evolve in their native patient-derived LTR backbone structure demonstrated a spectrum of basal and Tat-mediated transcriptional activities using the IIIB-derived Tat and colinear Tat derived from the same molecular clone containing the 3T/5T LTR SNP. In silico predictions utilizing colinear envelope sequence suggested that the patient’s virus evolved from an X4 to an R5 swarm prior to the development of neurological complications and more advanced HIV disease. These results suggest that the HIV-1 genomic swarm may evolve during the course of disease in response to selective pressures that lead to changes in prevalence of specific polymorphisms in the LTR, env, and/or tat that could predict the onset of neurological disease and result in alterations in viral function.

Keywords

HIV-1 SNP HAND LTR Env 

Notes

Acknowledgments

These studies were funded in part by the Public Health Service, National Institutes of Health through grants from the National Institute of Neurological Disorders and Stroke, NS32092 and NS46263, the National Institute of Drug Abuse, DA19807 (Dr. Brian Wigdahl, Principal Investigator), and under the Ruth L. Kirschstein National Research Service Award 5T32MH079785 (Sonia Shah). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Dr. Julio Martin-Garcia is funded through grants from the National Institute of Neurological Disorders and Stroke NIH NS065727. Dr. Michael Nonnemacher was supported by faculty development funds provided by the Department of Microbiology and Immunology and the Institute for Molecular Medicine and Infectious Disease.

References

  1. Boven LA, Noorbakhsh F, Bouma G, van der Zee R, Vargas DL, Pardo C, McArthur JC, Nottet HS, Power C (2007) Brain-derived human immunodeficiency virus-1 Tat exerts differential effects on LTR transactivation and neuroimmune activation. J Neurovirol 13:173–184CrossRefPubMedGoogle Scholar
  2. Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB (2008) Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res 18:763–770CrossRefPubMedGoogle Scholar
  3. Burdo TH, Gartner S, Mauger D, Wigdahl B (2004) Region-specific distribution of human immunodeficiency virus type 1 long terminal repeats containing specific configurations of CCAAT/enhancer-binding protein site II in brains derived from demented and nondemented patients. J Neurovirol 10(Suppl 1):7–14PubMedGoogle Scholar
  4. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188CrossRefPubMedGoogle Scholar
  5. de Jong JJ, Goudsmit J, Keulen W, Klaver B, Krone W, Tersmette M, de Ronde A (1992) Human immunodeficiency virus type 1 clones chimeric for the envelope V3 domain differ in syncytium formation and replication capacity. J Virol 66:757–765PubMedGoogle Scholar
  6. Fields BN, Knipe DM, Howley PM, Griffin DE (2001) Fields’ virology, 4th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  7. Fields BN, Knipe DM, Howley PM (2007) Fields’ virology, 5th edn. Wolters Kluwer Health, PhiladelphiaGoogle Scholar
  8. Fouchier RA, Groenink M, Kootstra NA, Tersmette M, Huisman HG, Miedema F, Schuitemaker H (1992) Phenotype-associated sequence variation in the third variable domain of the human immunodeficiency virus type 1 gp120 molecule. J Virol 66:3183–3187PubMedGoogle Scholar
  9. Gao F, Robertson DL, Morrison SG, Hui H, Craig S, Decker J, Fultz PN, Girard M, Shaw GM, Hahn BH, Sharp PM (1996) The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin. J Virol 70: 7013–7029Google Scholar
  10. Garcia-Crespo K, Cadilla C, Skolasky R, Melendez LM (2010) Restricted HIV-1 replication in placental macrophages is caused by inefficient viral transcription. J Leukoc Biol 87:633–636CrossRefPubMedGoogle Scholar
  11. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. Humana, TotowaGoogle Scholar
  12. Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc Natl Acad Sci USA 94:8714–8719CrossRefPubMedGoogle Scholar
  13. Henderson AJ, Zou X, Calame KL (1995) C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J Virol 69:5337–5344PubMedGoogle Scholar
  14. Henderson AJ, Connor RI, Calame KL (1996) C/EBP activators are required for HIV-1 replication and proviral induction in monocytic cell lines. Immunity 5:91–101CrossRefPubMedGoogle Scholar
  15. Ho SH, Tasca S, Shek L, Li A, Gettie A, Blanchard J, Boden D, Cheng-Mayer C (2007) Coreceptor switch in R5-tropic simian/human immunodeficiency virus-infected macaques. J Virol 81:8621–8633CrossRefPubMedGoogle Scholar
  16. Hogan TH, Stauff DL, Krebs FC, Gartner S, Quiterio SJ, Wigdahl B (2003) Structural and functional evolution of human immunodeficiency virus type 1 long terminal repeat CCAAT/enhancer binding protein sites and their use as molecular markers for central nervous system disease progression. J Neurovirol 9:55–68PubMedGoogle Scholar
  17. Los Alamos HIV-1 sequence database. http://www.hiv.lanl.gov/
  18. Hughes ES, Bell JE, Simmonds P (1997) Investigation of the dynamics of the spread of human immunodeficiency virus to brain and other tissues by evolutionary analysis of sequences from the p17gag and env genes. J Virol 71:1272–1280PubMedGoogle Scholar
  19. Jensen MA, van’t Wout AB (2003) Predicting HIV-1 coreceptor usage with sequence analysis. AIDS Rev 5:104–112PubMedGoogle Scholar
  20. Jensen MA, Li FS, van’t Wout AB, Nickle DC, Shriner D, He HX, McLaughlin S, Shankarappa R, Margolick JB, Mullins JI (2003) Improved coreceptor usage prediction and genotypic monitoring of R5-to-X4 transition by motif analysis of human immunodeficiency virus type 1 env V3 loop sequences. J Virol 77:13376–13388CrossRefPubMedGoogle Scholar
  21. Jones KA, Kadonaga JT, Luciw PA, Tjian R (1986) Activation of the AIDS retrovirus promoter by the cellular transcription factor, Sp1. Science 232:755–759CrossRefPubMedGoogle Scholar
  22. Kim JY, Gonzalez-Scarano F, Zeichner SL, Alwine JC (1993) Replication of type 1 human immunodeficiency viruses containing linker substitution mutations in the −201 to −130 region of the long terminal repeat. J Virol 67:1658–1662PubMedGoogle Scholar
  23. Kitchen SG, Jones NR, LaForge S, Whitmire JK, Vu BA, Galic Z, Brooks DG, Brown SJ, Kitchen CM, Zack JA (2004) CD4 on CD8(+) T cells directly enhances effector function and is a target for HIV infection. Proc Natl Acad Sci USA 101:8727–8732CrossRefPubMedGoogle Scholar
  24. Marozzi A, Meneveri R, Giacca M, Gutierrez MI, Siccardi AG, Ginelli E (1998) In vitro selection of HIV-1 TAR variants by the Tat protein. J Biotechnol 61:117–128CrossRefPubMedGoogle Scholar
  25. McAllister JJ, Phillips D, Millhouse S, Conner J, Hogan T, Ross HL, Wigdahl B (2000) Analysis of the HIV-1 LTR NF-kappaB-proximal Sp site III: evidence for cell type-specific gene regulation and viral replication. Virology 274:262–277CrossRefPubMedGoogle Scholar
  26. Moses AV, Ibanez C, Gaynor R, Ghazal P, Nelson JA (1994) Differential role of long terminal repeat control elements for the regulation of basal and Tat-mediated transcription of the human immunodeficiency virus in stimulated and unstimulated primary human macrophages. J Virol 68:298–307PubMedGoogle Scholar
  27. Nonnemacher MR, Irish BP, Liu Y, Mauger D, Wigdahl B (2004) Specific sequence configurations of HIV-1 LTR G/C box array result in altered recruitment of Sp isoforms and correlate with disease progression. J Neuroimmunol 157:39–47CrossRefPubMedGoogle Scholar
  28. Pantaleo G, Graziosi C, Fauci AS (1993) New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med 328:327–335CrossRefPubMedGoogle Scholar
  29. Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28:663–668CrossRefPubMedGoogle Scholar
  30. Peters PJ, Duenas-Decamp MJ, Sullivan WM, Clapham PR (2007) Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues. J Neuroimmune Pharmacol 2:32–41CrossRefPubMedGoogle Scholar
  31. Pirrone V, Passic S, Wigdahl B, Rando RF, Labib M, Krebs FC (2010) A styrene-alt-maleic acid copolymer is an effective inhibtor of R5 and X4 human immunodeficiency virus type 1 infection. J Biomed Biotechnol 2010:548749. doi:10.1155/2010/548749
  32. Price RW, Brew BJ (1988) The AIDS dementia complex. J Infect Dis 158:1079–1083PubMedGoogle Scholar
  33. Ross EK, Buckler-White AJ, Rabson AB, Englund G, Martin MA (1991) Contribution of NF-kappa B and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: distinct patterns of viral growth are determined by T-cell types. J Virol 65:4350–4358PubMedGoogle Scholar
  34. Ross HL, Gartner S, McArthur JC, Corboy JR, McAllister JJ, Millhouse S, Wigdahl B (2001) HIV-1 LTR C/EBP binding site sequence configurations preferentially encountered in brain lead to enhanced C/EBP factor binding and increased LTR-specific activity. J Neurovirol 7:235–249CrossRefPubMedGoogle Scholar
  35. Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, Robertson K, McArthur JC, Ronald A, Katabira E (2005) The international HIV dementia scale: a new rapid screening test for HIV dementia. AIDS 19:1367–1374PubMedGoogle Scholar
  36. Shioda T, Levy JA, Cheng-Mayer C (1992) Small amino acid changes in the V3 hypervariable region of gp120 can affect the T-cell-line and macrophage tropism of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 89:9434–9438CrossRefPubMedGoogle Scholar
  37. van Marle G, Power C (2005) Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neurovirol 11:107–128CrossRefPubMedGoogle Scholar
  38. Zeichner SL, Kim JY, Alwine JC (1991) Linker-scanning mutational analysis of the transcriptional activity of the human immunodeficiency virus type 1 long terminal repeat. J Virol 65:2436–2444PubMedGoogle Scholar
  39. Zhu T, Mo H, Wang N, Nam DS, Cao Y, Koup RA, Ho DD (1993) Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science 261:1179–1181CrossRefPubMedGoogle Scholar

Copyright information

© Journal of NeuroVirology, Inc. 2011

Authors and Affiliations

  • Luna Li
    • 1
    • 2
  • Benjamas Aiamkitsumrit
    • 1
    • 2
  • Vanessa Pirrone
    • 1
    • 2
  • Michael R. Nonnemacher
    • 1
    • 2
  • Adam Wojno
    • 1
    • 2
  • Shendra Passic
    • 1
    • 2
  • Katherine Flaig
    • 1
    • 2
  • Evelyn Kilareski
    • 1
    • 2
  • Brandon Blakey
    • 1
    • 2
  • Jade Ku
    • 1
    • 2
  • Nirzari Parikh
    • 1
    • 2
  • Rushabh Shah
    • 1
    • 2
  • Julio Martin-Garcia
    • 1
    • 2
  • Brian Moldover
    • 5
  • Laila Servance
    • 4
  • David Downie
    • 4
  • Sharon Lewis
    • 4
  • Jeffrey M. Jacobson
    • 1
    • 2
    • 3
    • 4
  • Dennis Kolson
    • 6
  • Brian Wigdahl
    • 1
    • 2
    • 3
  1. 1.Department of Microbiology and ImmunologyDrexel University College of MedicinePhiladelphiaUSA
  2. 2.Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA
  3. 3.Center for Clinical and Translational Medicine, Institute for Molecular Medicine and Infectious DiseaseDrexel University College of MedicinePhiladelphiaUSA
  4. 4.Division of Infectious Disease and HIV Medicine, Department of MedicineDrexel University College of MedicinePhiladelphiaUSA
  5. 5.B-Tech Consulting, Ltd.PhiladelphiaUSA
  6. 6.Department of NeurologyUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations