Body size and habitat use of the common weasel Mustela nivalis vulgaris in Mediterranean farmlands colonised by common voles Microtus arvalis

  • François MougeotEmail author
  • Xavier Lambin
  • Beatriz Arroyo
  • Juan-José Luque-Larena
Original Paper


Small mustelids such as weasels are highly specialized predators of small rodents. Their diminutive size allows hunting for prey underground, but also means that they are “bite-sized” predators, preyed upon by other larger predators. Habitat use by weasels is therefore expected to depend not only on prey abundance, but also on predation risk. We report here on the body size and habitat use of common weasels Mustela nivalis vulgaris captured in intensive farmlands of northwest Spain during 2009–2015. We show that weasels’ capture rate was higher in field margins than in other habitats (cereal and alfalfa fields, fallows) irrespective of season. All small mammals (common vole, wood mouse, Algerian mouse, and greater white-toothed shrew) were consistently more frequently captured in field margins than other habitats. Weasel capture rate in each habitat was proportional to that of prey in these (alfalfa > fallows > cereal), except for field margins, which were used more intensively than expected from prey capture rate. Weasel capture rate was 37% lower in areas provided with nest boxes to increase local raptor abundance, a reduction that occurred in all habitats and was significant when correcting for prey capture rate. Weasel habitat use reflected a trade-off between prey abundance (bottom-up control) and predation risk (top-down control), with a preferential use of field margins that offer not only more prey but also permanent vegetation cover and protection from avian predators throughout most of the annual crop cycles. Weasel and vole head width data show that voles are not safe underground from smaller female weasels and that burrow entrances were wide enough for weasels to escape underground from predators. In NW Spain, common voles are a main farmland pest causing significant impacts. We discuss the implications of current vole control measures for weasels in areas recurrently affected by vole outbreaks.


Vole outbreak management Apodemus sylvaticus Crocidura russula Mus spretus Field margins Predation risk Trade-offs 



We thank R. Rodríguez-Pastor, J. Romairone, S. Herrero Cófreces, E. Tedesco, L. Arroyo, D. Jareño, JL Guzmán, J. Caro and V. Lopez-Villar for their help with the fieldwork. The raptor nest-box supplementation project was promoted by J. Viñuela (IREC-CSIC), implemented by GREFA and partially funded by ECOCYCLES (BIODIVERSA 2008, Era-net European project, EUI2008-03641). JJLL, BA and FM held animal experimentation permits of level C for Spain. Capture permits were provided by the Consejería de Fomento y Medio Ambiente, Junta de Castilla y León. This work was funded through the projects ECOCYCLES (EUI2008-03641 and EUI2008-03658), NERC NE/ G002045/1 and ECOVOLE (CGL2012-35348; Ministerio de Ciencia, Innovación y Universidades of Spain).


  1. Blanco JC (1998) Mammíferos de España I & II. Planeta, BarcelonaGoogle Scholar
  2. Brandt MJ, Lambin X (2005) Summertime activity patterns of common weasels Mustela nivalis vulgaris under differing prey abundances in grassland habitats. Acta Theriol 50:67CrossRefGoogle Scholar
  3. Dell’Arte GL, Laaksonen T, Norrdahl K, Korpimäki E (2007) Variation in the diet composition of a generalist predator, the red fox, in relation to season and density of main prey. Acta Oecol 31:276–281 Acta Oecologica, 31, 276CrossRefGoogle Scholar
  4. Domínguez JC, Díaz-Ruiz F, Viñuela J, de Diego N, Illanas S, Olea PP, Santamaría AE, Oñate JJ, Herranz J, Acebes P, Ferreras P, Malo J, Piñeiro X, Paz A, Cuéllar P, Mateo-Tomás P, Barja I, Jareño D, Piñeiro A, García JT (2018) New distribution data of the least weasel Mustela nivalis in Castilla y León. Galemys, SpainCrossRefGoogle Scholar
  5. Erlinge S (1974) Distribution, territoriality and numbers of weasels Mustela nivalis in relation to prey abundance. Oikos 25:308CrossRefGoogle Scholar
  6. Gilg O, Hanski I, Sittler B (2003) Cyclic dynamics in a simple vertebrate predator-prey community. Science 302:866PubMedCrossRefGoogle Scholar
  7. Gorman ML (1984) The response of prey to stoat (Mustela erminea) scent. J Zool 202:419CrossRefGoogle Scholar
  8. Graham IM, Lambin X (2002) The impact of weasel predation on cyclic field-vole survival: the specialist predator hypothesis contradicted. J Anim Ecol 71:946CrossRefGoogle Scholar
  9. Hanski I, Henttonen H, Korpimaki E, Oksanen L, Turchin P (2001) Small-rodent dynamics and predation. Ecology 82:1505CrossRefGoogle Scholar
  10. Hansson L, Henttonen H (1985) Gradients in density variations of small rodents – the importance of latitude and snow cover. Oecologia 67:394PubMedCrossRefGoogle Scholar
  11. Jareño D, Viñuela J, Luque-Larena JJ, Arroyo L, Arroyo B, Mougeot F (2014) A comparison of methods for estimating common vole (Microtus arvalis) abundance in agricultural habitats. Ecological Indicators 36:111–119CrossRefGoogle Scholar
  12. Jareño D, Viñuela J, Luque-Larena JJ, Arroyo L, Arroyo B, Mougeot F (2015) Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol Invasions 17:2315CrossRefGoogle Scholar
  13. Jedrzejewski W, Jedrzejewska B, McNeish E (1992) Hunting success of the weasel Mustela nivalis and escape tactics of forest rodents in Bialowieza National Park. Acta Theriol 37:319CrossRefGoogle Scholar
  14. Jubete F (2011) ¿Tuvieron efecto los tratamientos químicos contra los topillos?: inferencia a partir del estudio de la dieta de la lechuza común y censos de rapaces diurnas. Galemys 23:91Google Scholar
  15. King CM, Powell RA (2007) The natural history of weasels and stoats. Ecology, behaviour and management. Oxford University Press, OxfordCrossRefGoogle Scholar
  16. Klemola T, Korpimaki E, Norrdahl K, Tanhuanpaa M, Koivula M (1999) Mobility and habitat utilization of small mustelids in relation to cyclically fluctuating prey abundances. Ann Zool Fenn 36:75Google Scholar
  17. Korpimaki E, Norrdahl K (1998) Experimental reduction of predators reverses the crash phase of small-rodent cycles. Ecology 79:2448CrossRefGoogle Scholar
  18. Korpimaki E, Oksanen L, Oksanen T, Klemola T, Norrdahl K, Banks PB (2005) Vole cycles and predation in temperate and boreal zones of Europe. J Anim Ecol 74:1150CrossRefGoogle Scholar
  19. Lambin X (2017) The population dynamics of bite-sized predators: prey dependence, territoriality, and mobility. In: Macdonald DW, Newman C, Harrington LA (eds) Biology and Conservation of Musteloids: 13. University Press, OxfordGoogle Scholar
  20. Lambin X, Graham IM (2003) Testing the specialist predator hypothesis for vole cycles. Trends Ecol Evol 18:493CrossRefGoogle Scholar
  21. Lauret V, Delibes-Mateos M, Mougeot F, Arroyo B (2019) Understanding conservation conflicts associated with rodent outbreaks in farmland areas. Ambio in pressGoogle Scholar
  22. Luque-Larena JJ, Mougeot F, Viñuela J, Jareño D, Arroyo L, Lambin X, Arroyo B (2013) Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol 14:432CrossRefGoogle Scholar
  23. Luque-Larena JJ, Mougeot F, Roig DV, Lambin X, Rodriguez-Pastor R, Rodriguez-Valin E, Anda P, Escudero R (2015) Tularemia outbreaks and common vole (Microtus arvalis) irruptive population dynamics in Northwestern Spain, 1997-2014. Vector-Borne Zoonotic Dis 15:568PubMedCrossRefGoogle Scholar
  24. Luque-Larena JJ, Mougeot F, Arroyo B, Vidal MD, Rodriguez-Pastor R, Escudero R, Anda P, Lambin X (2017) Irruptive mammal host populations shape tularemia epidemiology. PLoS Pathog 13Google Scholar
  25. Luque-Larena JJ, Mougeot F, Arroyo B, Lambin X (2018) Got rats? Global environmental costs of thirst for milk include acute biodiversity impacts linked to dairy feed production. Glob Chang Biol 24:2752PubMedCrossRefGoogle Scholar
  26. MacDonald DW, Tew TE, Todd IA (2004) The ecology of weasels (Mustela nivalis) on mixed farmland in southern England. Biologia 59:235Google Scholar
  27. MacDonald DW, Newman C, Harrington LA (2017a) Beneath the umbrella: Conservation out of the limelight. In: Macdonald DW, Newman C, Harrington LA (eds) Biology and Conservation of Musteloids. Academic Press, OxfordGoogle Scholar
  28. Macdonald DW, Newman C, Harrington LA (2017b) Biology and conservation of musteloids. Oxford University Press, OxfordGoogle Scholar
  29. McDonald RA, Harris S, Turnbull G, Brown P & Fletcher M (1998) Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environmental Pollution 103:17–23Google Scholar
  30. Magrini C, Manzo E, Zapponi L, Angelici FM, Boitani L, Cento M (2009) Weasel Mustela nivalis spatial ranging behaviour and habitat selection in agricultural landscape. Acta Theriol 54:137CrossRefGoogle Scholar
  31. Mougeot F, Lambin X, Rodriguez-Pastor R, Romairone J, Luque-Larena JJ (2019) Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100(9), e02776Google Scholar
  32. Oksanen L, Oksanen T (1992) Long-term microtine dynamics in North Fennoscandian Tundra - the vole cycle and the lemming chaos. Ecography 15:226CrossRefGoogle Scholar
  33. Oksanen T, Oksanen L, Schneider M, Aunapuu M (2001) Regulation, cycles and stability in northern carnivore-herbivore systems: back to first principles. Oikos 94:101CrossRefGoogle Scholar
  34. Palazón S (2017) Comadreja – Mustela nivalis (Linnaeus, 1761). In: Salvador A, Barja I (eds) Enciclopedia Virtual de los Vertebrados Españoles. Museo Nacional de Ciencias Naturales, MadridGoogle Scholar
  35. Palazón S, Camps D, Carbonell F, Grajera J (2016) Predation of the weasel (Mustela nivalis) by diurnal raptors. Galemys 28:66–67CrossRefGoogle Scholar
  36. Paz A, Jareño D, Arroyo L, Viñuela J, Arroyo B, Mougeot F, Jose Luque-Larena J, Antonio Fargallo J (2013) Avian predators as a biological control system of common vole (Microtus arvalis) populations in north-western Spain: experimental set-up and preliminary results. Pest Manag Sci 69:444PubMedCrossRefGoogle Scholar
  37. Rodriguez-Pastor R, Luque-Larena JJ, Lambin X, Mougeot F (2016) "Living on the edge": The role of field margins for common vole (Microtus arvalis) populations in recently colonised Mediterranean farmland. Agric Ecosyst Environ 231:206CrossRefGoogle Scholar
  38. Rodriguez-Pastor R, Escudero R, Lambin X, Vidal D, Gil H, Jado I, Rodriguez-Vargas M, Luque-Larena JJ, Mougeot F (2019) Zoonotic pathogens in fluctuating common vole (Microtus arvalis) populations: occurrence and dynamics. Parasitology 146:389PubMedCrossRefGoogle Scholar
  39. Romairone J, Jimenez J, Luque-Larena JJ, Mougeot F (2018) Spatial capture-recapture design and modelling for the study of small mammals. PLoS One 13:e0198766PubMedPubMedCentralCrossRefGoogle Scholar
  40. Roos D, Caminero Saldaña C, Arroyo B, Mougeot F, Luque-Larena JJ, Lambin X (2019) Unintentional effects of environmentally-friendly farming practices: arising conflicts between zero-tillage and a crop pest, the common vole (Microtus arvalis). Agric Ecosyst Environ 272:105PubMedPubMedCentralCrossRefGoogle Scholar
  41. Sánchez-Barbudo IS, Camarero PR, Mateo R (2012) Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Total Environ 420:280–288PubMedCrossRefGoogle Scholar
  42. Santamaria AE, Olea PP, Viñuela J, Garcia JT (2019) Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur J Wildl Res onlineGoogle Scholar
  43. Sidorovich VE, Solovej IA (2007) The stoat Mustela erminea population decline in northern Belarus and its consequences for weasels Mustela nivalis. N Z J Zool 34:9CrossRefGoogle Scholar
  44. Sundell J, Norrdahl K (2002) Body size-dependent refuges in voles: an alternative explanation of the Chitty effect. Ann Zool Fenn 39:325Google Scholar
  45. Torre I, Raspall A, Arrizabalaga A, Diaz M (2018) Weasel (Mustela nivalis) decline in NE Spain: prey or land use change? Mammal Res 4:501CrossRefGoogle Scholar
  46. Zub K, Soennichsen L, Szafranska PA (2008) Habitat requirements of weasels Mustela nivalis constrain their impact on prey populations in complex ecosystems of the temperate zone. Oecologia 157:571PubMedCrossRefGoogle Scholar
  47. Zub K, Szafrańska PA, Konarzewski M, Speakman JR (2011) Effect of energetic constraints on distribution and winter survival of weasel males. J Anim Ecol 80:259–269PubMedCrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2019

Authors and Affiliations

  1. 1.Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM)Ciudad RealSpain
  2. 2.School of Biological SciencesUniversity of AberdeenAberdeenUK
  3. 3.Departamento de Ciencias Agroforestales, Escuela Técnica Superior de Ingenierías AgrariasUniversidad de ValladolidPalenciaSpain

Personalised recommendations