Advertisement

Echolocation call frequency and mitochondrial control region variation in the closely related bat species of the genus Rhinolophus (Chiroptera: Rhinolophidae) occurring in Iran: implications for taxonomy and intraspecific phylogeny

  • Saeed Shahabi
  • Mozafar Sharifi
  • Vahid AkmaliEmail author
Original Paper

Abstract

There is a high level of morphological similarity among rhinolophid species leading to problematic taxonomic identifications. We undertook analyses of mitochondrial DNA gene sequences (D-loop), along with morphologic and acoustic examinations in order to evaluate taxonomic status and phylogenetic relationships of the horseshoe bat species in Iran. All analyses based on molecular, morphological, and sonar characteristics revealed five rhinolophid species including Rhinolophus mehelyi, R. euryale, R. ferrumequinum, R. blasii, and R. hipposideros in Iran. Genetic study revealed one lineage in R. mehelyi, two lineages in each of species R. euryale, R. ferrumequinum, and R. blasii, and three lineages in R. hipposideros. Our results showed high haplotype diversity (Hd) in the Iranian rhinolophid species. Compared with other studies of bat D-loop sequences, the genetic mean nucleotide diversity obtained for R. blasii in the current study (π = 0.0569) was the highest value and for R. euryale was found to be the lowest value (π = 0.0126) among nucleotide diversity values for other bat species. The average dominant frequency (peak frequency ± standard deviation) for R. euryale, R. ferrumequinum, R. mehelyi, R. blasii, and R. hipposideros was 106.57 ± 0.32, 82.02 ± 0.19, 105.57 ± 0.45, 92.85 ± 0.95, and 110.74 ± 1.93 respectively. As a conclusion, based on the present genetic study, there are one to three lineages including at least one southern and one northern in every rhinolophid species in Iran.

Keywords

Horseshoe bat Taxonomy D-loop Echolocation Iran 

Notes

Supplementary material

13364_2019_417_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 29 kb)

References

  1. Ahmadzadeh F, Carretero MA, Rödder D, Harris DJ, Freitas SN, Perera A, Böhme W (2013) Inferring the effects of past climate fluctuations on the distribution pattern of Iranolacerta (Reptilia, Lacertidae): evidence from mitochondrial DNA and species distribution models. Zool Anz 252:141–148CrossRefGoogle Scholar
  2. Akmali V, Farazmand A, Darvish J, Sharifi M (2011) Phylogeography and taxonomic status of the greater mouse-tailed bat Rhinopoma microphyllum (Chiroptera: Rhinopomatidae) in Iran. Acta Chiropterologica 13(2):279–290CrossRefGoogle Scholar
  3. Andersen K (1905) On some bats of the genus Rhinolophus, with remarks on their mutual affinities, and descriptions of twenty-six new forms. Proc Zool Soc London 1905(2):75–145Google Scholar
  4. Andersen K (1918) Diagnoses of new bats of the families Rhinolophidae and Megadermtidae. Ann Mag Nat Hist 9(2):374–384CrossRefGoogle Scholar
  5. Andriollo T, Naciri Y, Ruedi M (2015) Two mitochondrial barcodes for one biological species: the case of European Kuhl’s pipistrelles (Chiroptera). PLoS One 10, e0134881Google Scholar
  6. Benda P, Aandreas M, Kock D, Lučan RK, Munclinger P, NoVá P, OBuch J, Ochman K, Reiter A, Uhrin M, Wein FD (2006) Bats (Mammalia: Chiroptera) of the eastern Mediterranean. Part 4. Bat fauna of Syria: distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae 70:1–329Google Scholar
  7. Benda P, Faizolahi K, Andreas M, Obuch J, Reiter A, Ševčík M, Uhrin M, Vallo P, Ashrafi S (2012) Bats (Mammalia: Chiroptera) of the eastern Mediterranean and Middle East. Part 10. Bat fauna of Iran. Acta Societatis Zoologicae Bohemicae 76:163–582Google Scholar
  8. Bilgin R, Çoraman E, Karataş A, Morales JC (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae), in southeastern Europe and Anatolia, with a specific focus on whether the Sea of Marmara is a barrier to gene flow. Acta Chiropterologica 11(1):53–60CrossRefGoogle Scholar
  9. Bruford MW, Hanotte O, Brokfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, New York, pp 225–269Google Scholar
  10. Chen SF, Rossiter SJ, Faulkes CG, Jones G (2006) Population genetic structure and demographic history of the endemic formosan lesser horseshoe bat (Rhinolophus monoceros). Mol Ecol 15:1643–1656CrossRefGoogle Scholar
  11. Cockrum EL (1976) Status of the name of a Rhinolophid bat, Rhinolophus euryale tuneti Deleuil and Labbe, 1955. Mammalia 40(4):685–686CrossRefGoogle Scholar
  12. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe bats of the world: (Chiroptera: Rhinolophidae). Alana BooksGoogle Scholar
  13. DeBlase AF (1980) The bats of Iran: systematics, distribution, ecology. Fieldiana: Zoology 4:1–424Google Scholar
  14. Dianat M, Darvish J, Cornette R, Aliabadian M, Nicolas V (2016) Evolutionary history of the persian jird, Meriones persicus, based on genetics, species distribution modelling and morphometric data. J Zool Syst Evol Res.  https://doi.org/10.1111/jzs.12145
  15. Dietz C, Helversen OV 2004. Identification key to the bats of Europe. 72 pp. Electronical publication, version 1.0, available at www.uniuebingen.de/tierphys/Kontakt/mitarbeiter_seiten/dietz.htm
  16. Dietz C, Dietz I, Siemers BM (2006) Wing measurement variations in the five European horseshoe bat species (Chiroptera: Rhinolophidae). J Mammal 87:1241–1251CrossRefGoogle Scholar
  17. Djamali M, Akhani H, KhoshraVesh R, Andrieu-ponel V, Ponel P, Brewer S (2011) Application of the global bioclimatic classification to Iran: implications for understanding the modern vegetation and biogeography. Ecologia Mediterranea 37:91–114Google Scholar
  18. Dool SE, Puechmaille SJ, Dietz C, Juste J, Ibanez C, Hulva P, Roue SG, Petit EJ, Jones G, Russo D, Toffoli R, Viglino A, Martinoli A, Rossiter SJ, Teeling EC (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070CrossRefGoogle Scholar
  19. Dool SE, Puechmaille SJ, Foley NM, Allegrini B, Bastian A, Mutumi GL, Maluleke TG et al (2016) Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: lessons from horseshoe bats (Rhinolophidae: Chiroptera). Mol Phylogenet Evol 97:196–212CrossRefGoogle Scholar
  20. Eghbali H, Shahabi S, Najafi N, Mehdizadeh R, Shetav Y, Sharifi M (2017) Postnatal growth, wing development and age estimations in the Mediterranean horseshoe bat, Rhinolophus euryale (Chiroptera: Rhinolophidae) in Kerend Cave, Western Iran.  https://doi.org/10.1515/mammalia-2017-0006
  21. Etemad E (1967) Notes on bats from Iran. Mammalia 31:275–280CrossRefGoogle Scholar
  22. Farasat H, Akmali V, Sharifi M (2016) Population genetic structure of the endangered kaiser’s mountain newt, Neurergus kaiseri (Amphibia: Salamandridae). PLoS One 11:e0149596.  https://doi.org/10.1371/journal.pone.0149596 CrossRefGoogle Scholar
  23. Farhang-Azad A (1969) Bats from North Khorassan, Iran. Mammalia 33:730–732Google Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  25. Felten H, Spitzen Berger F, Storch G (1977). Zur Kleinsäugerfauna West-Anatoliens. Teil IIIa Senckenbergiana Biologica 58: 1–44Google Scholar
  26. Furman A, Öztunc T, Postawa T, Çoraman N (2010) Shallow genetic differentiation in Miniopterus schreibersii (Chiroptera: Vespertilionidae) indicates a relatively recent re-colonization of Europe from a single glacial refugium. Acta Chiropterologica 12:51–55CrossRefGoogle Scholar
  27. Gaisler J (1983) Nouvelles données sur les chiroptéres du Nord Algérien. Mammalia 43(3):359–369Google Scholar
  28. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695CrossRefGoogle Scholar
  29. Guillén-Servent A, Francis CM, Ricklefs RE (2003) Phylogeny and biogeography of the horseshoe bats. In: Csorba G, Ujhelyi P, Thomas N (eds) Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana books, Shropshire, United Kingdom, pp xii–xxivGoogle Scholar
  30. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefGoogle Scholar
  31. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids SympSer 41:95–98Google Scholar
  32. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefGoogle Scholar
  33. Jones G (1996) Does echolocations constrain the evolution of body size in bats? Symp Zool Soc Lond 69:111–128Google Scholar
  34. Karami M, Hutterer R, Benda P, Siahsarvie R, kryštufek B (2008) Annotated checklist of the mammals of Iran. Lynx 39:63–102Google Scholar
  35. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  36. Koopman KF (1994) Chiroptera: systematics. Handbook of zoology. Mammalia, part 60. Walter de Gruyter, BerlinGoogle Scholar
  37. Kryštufek B, Đulić B (2001) Rhinolophus blasii Peters, 1866—Blasius’ Hufeisennase pp.: 75–90. In: krappF. (ed.)Google Scholar
  38. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  39. Macias S, Mora EC, Garcia A (2006) Acoustic identification of mormoopid bats: a survey during the evening exodus. J Mammal 87(2):324–330CrossRefGoogle Scholar
  40. Misonne X (1959) Analyse zoogéographique des mammifères de l’Iran. Institut Royal des Sciences Natureles de Belgique, Mémoires, Deuxième Série 59:1–157Google Scholar
  41. Obrist MK, Boesch R, Flückiger PF (2004) Variability in echolocation call design of 26 Swiss bat species: consequences, limits, and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68:307–322CrossRefGoogle Scholar
  42. Ortega J, Tschapka M, Gonzalez-Terrazas TP, Suzan G, Mededellin RA (2009) Phylogeography of Musonycteris harrisoni along the Pacific coast of Mexico. Acta Chiropterologica 11:259–269CrossRefGoogle Scholar
  43. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256CrossRefGoogle Scholar
  44. Puechmaille SJ, Teeling EC (2014) Non-invasive genetics can help find rare species: a case study with Rhinolophus mehelyi and R. Euryale (Rhinolophidae: Chiroptera) in Western Europe. Mammalia 78:251–255CrossRefGoogle Scholar
  45. Puechmaille SJ, Hizem WM, Allegrini B, Abiadh A (2012) Bat fauna of Tunisia: review of records and new records, morphometrics and echolocation data. Vespertilio 16:211–239Google Scholar
  46. Rajaei SH, Rodder D, Weigand AM, Dambach J, Raupach MJ, Wagele JW (2013) Quaternary refugia in southwestern Iran: insights from two sympatric moth species (Insecta, Lepidoptera). Org Divers Evol 13:409–423CrossRefGoogle Scholar
  47. Rechinger KH (2010) Flora Iranica akademsiche druck verlagsanstalt und naturhistorisches museum Wien. Graz, Austria, pp 1–174Google Scholar
  48. Rodrı’guez-San PA, Simonetti JA (2013) Acoustic identification of four species of bats (order Chiroptera) in central Chile. Bioacoustics 22(2):165–172CrossRefGoogle Scholar
  49. Roguinl DE (1988) Notes sur quelques mammifères du Baluchistan iranien. Rev Suisse Zool 95:595–606CrossRefGoogle Scholar
  50. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefGoogle Scholar
  51. Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. J Zool (Lond) 258:91–103CrossRefGoogle Scholar
  52. Salsamendi E, Aihartza J, Goiti U, Almenar D, Garin I (2005) Echolocation calls and morphology in the Mehelyi’s (Rhinolophus mehelyi) and Mediterranean (R. euryale) horseshoe bats: implications for resource partitioning. Hystrix 16:149–158Google Scholar
  53. Schuchmann M, Siemers BM (2010) Variability in echolocation call intensity in a community of horseshoe bats: a role for resource partitioning or communication? PLoS One 5(9): e12842.  https://doi.org/10.1371/journal.pone.0012842
  54. Shahabi S, Akmali V, Sharifi M (2017) Taxonomic evaluation of the greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Iran inferred from the mitochondrial D-loop gene. Zool Sci 34:1–7CrossRefGoogle Scholar
  55. Simmons N B (2005) Order Chiroptera. pp.: 312–529. In: Wilson D. E. and Reeder D. M. (eds.): Mammal species of the world. A taxonomic and geographic reference. Third Edition. Volume 1. Baltimore: The John Hopkins University Press, xxxviii+743 pp.Google Scholar
  56. Soisook P, Bumrungsri S, Satasook C, Thong VD, Bu SSH, Harrison DL, Bates PJJ (2008) A taxonomic review of Rhinolophus stheno and R. malayanus (Chiroptera: Rhinolophidae) from continental Southeast Asia: an evaluation of echolocation call frequency in discriminating between cryptic species. Acta Chiropterologica 10:221–242CrossRefGoogle Scholar
  57. Srinivasulu C, Racey PA, Mistry S (2010) A key to the bats (Mammalia: Chiroptera) of South Asia. J Threat Taxa 2(7):1001–1076CrossRefGoogle Scholar
  58. Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA (2010) Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol Phylogenet Evol 54:1–9CrossRefGoogle Scholar
  59. Strelkov PP, Sosnovceva VP, Babaev HB (1978) Letučie myši (Chiroptera) Turkmenii [Bats (Chiroptera) of Turkmenistan]. Trudy zoologičeskogo instituta akademii nauk SSSR [Leningrad] 79: 3–71 (in Russian, with a subtitle in English)Google Scholar
  60. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Phylogenet Evol 28:2731–2739CrossRefGoogle Scholar
  61. Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J, Cotterill FP (2012) Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio-1499 Pleistocene divergence of dwarfs and giants across an Afromontane Archipelago. PLoS One 7: e41744Google Scholar
  62. Wilkinson GS, Chapman AM (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128(3):607–617Google Scholar
  63. Wu Y, Thong VD (2011) A new species of Rhinolophus (Chiroptera: Rhinolophidae) from China. Zool Sci 28:235–241CrossRefGoogle Scholar
  64. Zhao H, Zhang S, Zuo M, Zhou J (2003) Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae. J Zool (Lond) 259:189–195CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceRazi UniversityKermanshahIran

Personalised recommendations