Mammal Research

, Volume 64, Issue 1, pp 31–38 | Cite as

Are differences in variation and allometry in testicular size of two sibling species of the genus Mus (Mammalia, Rodentia) caused by female promiscuity?

  • Alexander Csanády
  • Michal Stanko
  • Ladislav Mošanský
Original Paper


Body and testes size can significantly affect male reproductive success under pre- and post-copulatory sexual selection. Testicular relative mass and/or volume are often used as a characteristic of sperm competitive ability in a comparison of phylogenetically close mammal species. Mus spicilegus males have the largest testes relative to body mass of any Mus species, which is often an indicator of high sperm competition. These findings suggest that these mound-building mice are probably not strictly monogamous. Here, we show the quantitative characteristics of testicular size, variation, and allometry of two sibling species with a different social and mating system, the house mouse (Mus musculus) and the mound-building mouse (M. spicilegus) from the Western Carpathian (Slovakia). We investigated whether testicular size (testicular length/width) was correlated with the head-and-body length and body weight, which are not involved in reproduction. Our results confirmed higher testicular values in M. spicilegus than in M. musculus. Similarly, the high phenotypic variance and positive allometry in testicular growth confirmed the suggestion that males with larger testes and a higher production of testosterone may be more competitive and more successful in post-copulatory selection.


House mouse Mound-building mouse Variability Reproduction success Mating system 



We would like to express our sincere thanks to all colleagues for their help in both the field and laboratory work. Our thanks also go to two anonymous referees for their valuable comments on the manuscript. Finally, we would like to thank David McLean for revising the English language. The handling of small mammals complies with the laws of the Slovak Republic (No. 297/108/06).

Funding information

This work was prepared with the financial help of grant APVV-14-0274 and APVV-15-0134.


  1. Ambaryan AB, Maltzev AN, Kotenkova EV (2015) Relationship between characteristics of sexual behavior and male sperm competitive ability in taxa of superspecies complex Mus musculus sensu lato. Zh Obshch Biol 76:212–224Google Scholar
  2. Baláž I, Ambros M (2010) Distribution and biology of Muridae family (Rodentia) in Slovakia. First part: Chionomys nivalis, Microtus tatricus, Microtus subterraneus, Myodes glareolus. Constantine the Philosopher University in Nitra, Nitra. 115 ppGoogle Scholar
  3. Baláž I, Ambros M, Tulis F (2012) Biology and distribution of the species of the family Muridae (Rodentia) in Slovakia. Second part: Apodemus flavicollis, Apodemus sylvaticus, Apodemus uralensis, Apodemus agrarius. Constantine the Philosopher University in Nitra, Nitra. 174 ppGoogle Scholar
  4. Balčiauskienė L, Balčiauskas L, Vitkauskas V, Podėnas S (2015) Indoor small mammals in Lithuania: some morphometrical, body condition, and reproductive characteristics. Zool Ecol 25:305–313CrossRefGoogle Scholar
  5. Baudoin C, Busquet N, Dobson FS, Gheusi G, Féron C, Durand JL, Heth G, Patris B, Todrank J (2005) Male-female associations and female olfactory neurogenesis with pair bonding in Mus spicilegus. Biol J Linn Soc 84:323–334CrossRefGoogle Scholar
  6. Bonduriansky R (2007) Sexual selection and allometry: a critical reappraisal of the evidence and ideas. Evolution 61:838–849CrossRefGoogle Scholar
  7. Bonduriansky R, Day T (2003) The evolution of static allometry in sexually selected traits. Evolution 57:2450–2458CrossRefGoogle Scholar
  8. Bryja J, Patzenhauerová H, Albrecht T, Mošanský L, Stanko M, Stopka P (2008) Varying levels of female promiscuity in four Apodemus mice species. Behav Ecol Sociobiol 63:251–260CrossRefGoogle Scholar
  9. Čanády A (2008) Selected ecological aspects and biometrics of Mus spicilegus Petényi, 1882 (Rodentia) on Eastern Slovakia. PhD Thesis. Institute of Zoology, SAS, Bratislava. 92 pp, with 28 tables, 8 graphs and 14 figuresGoogle Scholar
  10. Čanády A, Mošanský L, Stanko M (2007) Biometrical characteristics comparison of two sympatric species of the Mus genus - Mus spicilegus and Mus musculus from eastern Slovakia, pp. 52–62. In: Adamec M, Urban P, Adamcová M (eds), Výskum a ochrana cicavcov na Slovensku VIII., Zborník referátov z konferencie (Zvolen), 12.-13.10.2007, Štátna ochrana prírody SR, Centrum ochrany prírody a krajiny, Banská Bystrica, 248 ppGoogle Scholar
  11. Čanády A, Mošanský L, Uličná L (2014) Variability of skull and dental characteristics in Mus spicilegus from the northern border of its distributional range. Biologia 69:1425–1430Google Scholar
  12. Csanády A, Mošanský L (2018) Skull morphometry and sexual size dimorphism in Mus musculus from Slovakia. North-west J Zool 14:102–106Google Scholar
  13. Cserkész T, Gubányi A, Farkas J (2008) Distinguishing Mus spicilegus from Mus musculus (Rodentia, Muridae) by using cranial measurements. Acta Zool Acad Sci Hung 54:305–318Google Scholar
  14. Dixson AF, Nyholt J, Anderson M (2004) A positive relationship between baculum length and prolonged intromission patterns in mammals. Acta Zool Sin 50:490–503Google Scholar
  15. Dobson FS, Baudoin C (2002) Experimental tests of spatial association and kinship in monogamous mice (Mus spicilegus) and polygynous mice (Mus musculus domesticus). Can J Zool 80:980–986CrossRefGoogle Scholar
  16. Dobson FS, Jacquot C, Baudoin C (2000) An experimental test of kin association in the house mouse. Can J Zool 78:1806–1812CrossRefGoogle Scholar
  17. Eberhard WG, Huber BA, Rodriguez RL, Briceño RD, Salas I, Rodriguez V (1998) One size fits all? Relationships between the size and degree of variationin genitalia and other body parts in twenty species of insects and spiders. Evolution 52:415–431CrossRefGoogle Scholar
  18. Ferguson SH, Lariviére S (2004) Are long penis bones an adaption to high latitudesnowy environments? Oikos 105:255–267CrossRefGoogle Scholar
  19. Féron C, Gouat P (2007) Paternal care in the mound-building mouse reduces inter-litter intervals. Reprod Fertil Dev 19:425–429CrossRefGoogle Scholar
  20. Frynta D, Slábová M, Váchová H, Volfová R, Munclinger P (2005) Aggression and commensalism in house mouse: a comparative study across Europe and the Near East. Aggress Behav 31:283–293CrossRefGoogle Scholar
  21. Frynta D, Slábová M, Vohralík V (2009) Why do male house mice have such small testes? Zool Sci 26:17–23CrossRefGoogle Scholar
  22. Garza JC, Dallas J, Duryadi D, Gerasimov S, Croset H, Boursot P (1997) Social structure of the mound-building mouse Mus spicilegus revealed by genetic analysis with microsatellites. Mol Ecol 6:1009–1017CrossRefGoogle Scholar
  23. Gomendio M, Martin-Coello J, Crespo C, Magaña C, Roldan ER (2006) Sperm competition enhances functional capacity of mammalian spermatozoa. Proc Natl Acad Sci 103:15113–15117CrossRefGoogle Scholar
  24. Gouat P, Féron C (2005) Deficit in reproduction in polygynously mated females of the monogamous mound-building mouse Mus spicilegus. Reprod Fertil Dev 17:617–623CrossRefGoogle Scholar
  25. Gouat P, Katona K, Poteaux C (2003) Is the socio-spatial distribution of mound-building mice, Mus spicilegus, compatible with a monogamous mating system? Mammalia 67:15–24CrossRefGoogle Scholar
  26. Groó Z, Szenczi P, Bánszegi O, Altbäcker V (2013) Natal dispersal in two mice species with contrasting social systems. Behav Ecol Sociobiol 67:235–242CrossRefGoogle Scholar
  27. Haisová-Slábová M, Munclinger P, Frynta D (2010) Sexual size dimorphism in free-living populations of Mus musculus: are male house mice bigger? Acta Zool Acad Sci Hung 56:139–151Google Scholar
  28. Hamar M (1960) Systematics, distribution and ecology of mound-building mouse (Mus musculus spicilegus Petényi, 1882) in Rumanien. Revue Biol Buc 5:207–219Google Scholar
  29. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  30. Hosken DJ, Stockley P (2004) Sexual selection and genital evolution. Trends Ecol Evol 19:87–93CrossRefGoogle Scholar
  31. Kinahan AA, Bennett NC, O’Riain MJ, Hart L, Bateman PW (2007) Size matters: genital allometry in an African mole-rat (Family: Bathyergidae). Evol Ecol 21:201–213CrossRefGoogle Scholar
  32. Kinahan AA, Bennett NC, Belton LE, Bateman PW (2008) Do mating strategies determine genital allometry in African mole rats (Bathyergidae). J Zool 274:312–317CrossRefGoogle Scholar
  33. Kotenkova EV, Osadchuk AV, Lyalyukhina SL (1989) Precopulatory isolating mechanisms between the house and mound-building mouse. Acta Theriol 34:315–324CrossRefGoogle Scholar
  34. Krawczyk AJ, Malecha AW, Tryjanowski P (2011) Is baculum size dependent on the condition of males in the polecat Mustela putorius? Folia Zool 60:247–252CrossRefGoogle Scholar
  35. Lemaître JF, Ramm SA, Hurst JL, Stockley P (2011) Social cues of sperm competition influence accessory reproductive gland size in a promiscuous mammal. Proc R Soc B 278:1171–1176CrossRefGoogle Scholar
  36. Lemaître JF, Ramm SA, Jennings N, Stockley P (2012) Genital morphology linked to social status in the bank vole (Myodes glareolus). Behav Ecol Sociobiol 66:97–105CrossRefGoogle Scholar
  37. Lidicker WZ (1966) Ecological observations on a feral house mouse population declining to extinction. Ecol Monogr 36:27–50CrossRefGoogle Scholar
  38. Lozan MN (1970) Rodents of Moldavia. Akademia Nauk Moldavskoj. Kishinev.2, 1–168. (in Russian)Google Scholar
  39. Macholán M (1996) Morphometric analysis of European house mice. Acta Theriol 41:255–275CrossRefGoogle Scholar
  40. Macholán M (2001) Multivariate analysis of morphometric variation in Asian Mus and sub-Saharan Nannomys (Rodentia: Muridae). Zool Anz 240:7–14CrossRefGoogle Scholar
  41. Macholán M (2006) A geometric morphometric analysis of the shape of the first upper molar in mice of the genus Mus (Muridae, Rodentia). J Zool 270:672–681CrossRefGoogle Scholar
  42. Mikeš M (1971) Ecological investigation on Mus musculus hortulanus Nordmann in Vojvodina. Matica srpska Zbornik za prírodne nauke 40:52–129 (in Serbian)Google Scholar
  43. Miller EH, Burton LE (2001) It’s all relative: allometry and variation in thebaculum (os penis) of the harp seal, Pagophilus groenlandicus (Carnivora: Phocidae). Biol J Linn Soc 72:345–355CrossRefGoogle Scholar
  44. Miller EH, Nagorsen DW (2008) Bacular variation and allometry in the western marten Martes caurina. Acta Theriol 53:129–142CrossRefGoogle Scholar
  45. Miller EH, Stewart ARJ, Stenson GB (1998) Baculum and testicle growth, allometry, and variation in the harp seal (Pagophilus groenlandicus). J Mammal 79:502–513CrossRefGoogle Scholar
  46. Miller EH, Jones IL, Stenson GB (1999) Baculum and testes of the hooded seal (Cystophora cristata): growth and size-scaling and their relationships to sexual selection. Can J Zool 77:470–479CrossRefGoogle Scholar
  47. Mori E, Iacucci A, Castiglia R, Santini L (2017) Sexual-size dimorphism in two synanthropic rat species: comparison and eco-evolutionary perspectives. Mamm Biol 83:78–80CrossRefGoogle Scholar
  48. Naumov NP (1940) Ecology of mound-building mouse Mus musculus hortulanus Nordm. Tr In-ta evoljuz morphologii AN SSSR 3:33–76 (in Russian)Google Scholar
  49. Orsini Ph, Bonhomme F, Britton-Davidian J, Croset H, Gerasimov S, Thaler L (1983) Le complexe d´especes du genre Mus en Europe Centrale et Orientale.II. Critéres d´identification répartition et caractéristiques écologiques. Z. Säugetierkd. 48:86–95Google Scholar
  50. Patris B, Baudoin C (1998) Female sexual preferences differ in Mus spicilegus and Mus musculus domesticus: the role of familiarization and sexual experience. Anim Behav 56:1465–1470CrossRefGoogle Scholar
  51. Patris B, Baudoin C (2000) A comparative study of parental care between two rodent species: implications for the mating system of the mound-building mouse Mus spicilegus. Behav Process 51:35–43CrossRefGoogle Scholar
  52. Patris B, Gouat P, Jacquot C, Christophe N, Baudoin C (2002) Agonistic and sociable behaviors in the mound-building mice, Mus spicilegus: a comparative study with Mus musculus domesticus. Aggress Behav 28:75–84CrossRefGoogle Scholar
  53. Pelikán J (1967) Variability of body weight in three Apodemus species. Folia Zool 16:199–220Google Scholar
  54. Pelikán J (1974) On the reproduction of Mus musculus L. in Czechoslovakia. Acta Sc Nat Brno 8:1–42Google Scholar
  55. Pizzari T (2006) Of mice and sperm. Proc Natl Acad Sci 103:14983–14984CrossRefGoogle Scholar
  56. Poteaux C, Busquet N, Gouat P, Katona K, Baudoin C (2008) Socio-genetic structure of mound-building mice, Mus spicilegus, in autumn and early spring. Biol J Linn Soc 93:689–699CrossRefGoogle Scholar
  57. Poulin R, Morand S (2000) Testes size, body size and male–male competition in acanthocephalan parasites. J Zool 250:551–558Google Scholar
  58. Preston BT, Stevenson IR, Pemberton JM, Coltman DW, Wilson K (2003) Overt and covert competition in a promiscuous mammal: the importance of weaponry and testes size to male reproductive success. Proc R Soc B 270:633–640CrossRefGoogle Scholar
  59. Preston BT, Stevenson IR, Lincoln GA, Monfort SL, Pilkington JG, Wilson K (2012) Testes size, testosterone production and reproductive behaviour in a natural mammalian mating system. J Anim Ecol 81:296–305CrossRefGoogle Scholar
  60. Ramm SA (2007) Sexual selection and genital evolution in mammals: a phylogenetic analysis of baculum length. Am Nat 169:360–369CrossRefGoogle Scholar
  61. Ramm SA, Khoo L, Stockley P (2010) Sexual selection and the rodent baculum: an intraspecific study in the house mouse (Mus musculus domesticus). Genetica 138:129–137CrossRefGoogle Scholar
  62. Schulte-Hostedde AI, Millar JS (2004) Intraspecific variation of testis size and sperm length in the yellow-pine chipmunk (Tamias amoenus): implications for sperm competition and reproductive success. Behav Ecol Sociobiol 55:272–277CrossRefGoogle Scholar
  63. Schulte-Hostedde A, Bowman J, Middel KR (2011) Allometry of the baculum and sexual size dimorphism in American martens and fishers (Mammalia: Mustelidae). Biol J Linn Soc 104:955–963Google Scholar
  64. Simeonovska-Nikolova DM (2003) Social relationships and social structure of the mound-building mouse (Mus spicilegus) in intraspecific cage groups. Acta Ethol 6:39–45CrossRefGoogle Scholar
  65. Simeonovska-Nikolova DM (2007) Spatial organization of the mound-building mouse Mus spicilegus in the region of northern Bulgaria. Acta Zool Sin 53:22–28Google Scholar
  66. Simeonovska-Nikolova D, Gerasimov S (2000) Seasonal changes of some population characteristics of Mus spicilegus Petényi in North Bulgaria. Acta Zool Bulg 52:81–90Google Scholar
  67. Simmons LW, Firman RC (2014) Experimental evidence for the evolution of the mammalian baculum by sexual selection. Evolution 68:276–283CrossRefGoogle Scholar
  68. Sokolov VE, Kotenkova EV, Ljalukchina SI (1990) The biology of the house mouse and mound-building mouse. Nauka, Moscow 207 pp. (in Russian)Google Scholar
  69. Sokolov VE, Kotenkova EV, Michailenko AG (1998) Mus spicilegus. Mamm Species 592:1–6CrossRefGoogle Scholar
  70. Stockley P, Searle JB, Macdonald DW, Jones CS (1996) Correlates of reproductive success within alternative mating tactics of the common shrew. Behav Ecol 7:334–340CrossRefGoogle Scholar
  71. Stockley P, Ramm SA, Sherborne AL, Thom MD, Paterson S, Hurst JL (2013) Baculum morphology predicts reproductive success of male house mice under sexual selection. BMC Biol 11:66CrossRefGoogle Scholar
  72. Suchomelová E, Munclinger P, Frynta D (1998) New evidence of pseudosexual behaviour and female aggression in mice: neutral cage interactions in Mus spicilegus and Mus spretus (Rodentia: Muridae). Folia Zool 47:241–247Google Scholar
  73. Tasikas DE, Fairn ER, Laurence S, Schulte-Hostedde AI (2009) Baculum variation and allometry in the muskrat (Ondatra zibethicus): a case for sexual selection. Evol Ecol 23:223–232CrossRefGoogle Scholar
  74. Tong W, Hoekstra H (2012) Mus spicilegus. Curr Biol 22:858–859CrossRefGoogle Scholar
  75. Unterholzner K, Willenig R (2000) Zu Ökologie, Verhalten und Morphologie der Ährenmaus Mus spicilegus Petényi, 1882. Biosystematics und Ecology Series, Verlag Öesterreichischen Akademie der Wissenschaften, Wien 17:1–88Google Scholar
  76. Yurkowski DJ, Chambellant M, Ferguson SH (2011) Bacular and testicular growth and allometry in the ringed seal (Pusa hispida): evidence of polygyny? J Mammal 92:803–810CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • Alexander Csanády
    • 1
  • Michal Stanko
    • 2
  • Ladislav Mošanský
    • 2
  1. 1.Department of Biology, Faculty of Humanities and Natural SciencesUniversity of PrešovPrešovSlovakia
  2. 2.Institute of ParasitologySlovak Academy of ScienceKošiceSlovakia

Personalised recommendations