Mammal Research

, Volume 64, Issue 1, pp 39–51 | Cite as

Modeling the response of an endangered flagship predator to climate change in Iran

  • Mohammad Reza AshrafzadehEmail author
  • Ali Asghar Naghipour
  • Maryam Haidarian
  • Igor Khorozyan
Original Paper


Land use changes in suitable areas, habitat loss, and fragmentation are likely to be the most important consequences of climate change for wildlife populations. Yet, little is known about the response of large carnivores to climate change, globally and regionally. In this study, we utilized the ensemble modeling based on six species distribution models in order to predict the spatial vulnerability of the globally endangered Persian leopard (Panthera pardus saxicolor) to climate change in Chaharmahal and Bakhtiari Province, a semi-arid region in Iran. We showed that about 12.12 to 22.38% of leopard habitats in the area may be lost by 2050 due to climate change under four representative concentration pathways (RCPs) within the framework of two general circulation models (GCMs). In contrast, 1.87 to 13.01% of currently unsuitable habitats can become suitable with climate change. Overall, a considerable portion of the leopard range will remain intact under global warming, but still habitat loss to climate change will vary from 5.89 to 14.59%. Thus, large-scale but locally focused and flexible conservation strategies should be applied in intact and sensitive areas so that to prevent the intensification of anthropogenic threats such as overgrazing and forest degradation from collection of firewood, charcoal, and medicinal plants under changing climate.


Climate adaptability Conservation Fragmentation Habitat loss Persian leopard Zagros 



We are grateful to Ali Reza Nazarian (Chaharmahal and Bakhtiari Provincial Office of Department of Environment, Shahrekord, Iran) for his help in data collection. We thank anonymous reviewers for thoughtful comments and ideas which improved the quality of the manuscript.

Supplementary material

13364_2018_384_MOESM1_ESM.docx (13 kb)
Table S1 (DOCX 13 kb)
13364_2018_384_MOESM2_ESM.doc (36 kb)
Table S2 (DOC 35 kb)


  1. Abbasian M, Moghim S, Abrishamchi A (2018) Performance of the general circulation models in simulating temperature and precipitation over Iran. Theor Appl Climatol 1–19.
  2. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  3. Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492CrossRefGoogle Scholar
  4. Aryal A, Shrestha UB, Ji W, Ale SB, Shrestha S, Ingty T, Maraseni T, Cockfield G, Raubenheimer D (2016) Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol Evol 6:4065–4075CrossRefGoogle Scholar
  5. Ashrafzadeh MR, Nazarian AR (2018) Habitat suitability modelling for the Caspian snowcock (Tetraogallus caspius) as a typical high-montane species. Iran J Nat Environ 70:745–756 (in Persian)Google Scholar
  6. Azizi G, Roushani M (2008) Using Mann-Kendall test to recognize of climate change in Caspian Sea southern coasts. Geo Res Quar 40:13–28 (in Persian)Google Scholar
  7. Babaeian I, Modirian R, Karimian M, Zarghami M (2015) Simulation of climate change in Iran during 2071–2100 using PRECIS regional climate modelling system. Desert 20:123–134Google Scholar
  8. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Meth Ecol Evol 3:327–338CrossRefGoogle Scholar
  9. Breitenmoser U, Shavgulidze I, Askerov E, Khorozyan I, Farhadinia MS, Can E, Bilgin C, Zazanashvili N (2010) Leopard conservation in the Caucasus. IUCN Cat News 53:39–40Google Scholar
  10. Carroll C (2007) Interacting effects of climate change, landscape conversion, and harvest on carnivore populations at the range margin: marten and lynx in the northern Appalachians. Conserv Biol 21:1092–1104CrossRefGoogle Scholar
  11. Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  12. Dunwiddie PW, Hall SA, Ingraham MW, Bakker JD, Nelson KS, Fuller R, Gray E (2009) Rethinking conservation practice in light of climate change. Ecol Restor 27:320–329CrossRefGoogle Scholar
  13. Early R, Sax DF (2014) Climatic niche shifts between species' native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob Ecol Biogeogr 23:1356–1365CrossRefGoogle Scholar
  14. Ebrahimi A, Farashi A, Rashki A (2017) Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environ Earth Sci 76:697CrossRefGoogle Scholar
  15. Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  16. Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  17. Eskildsen A, Roux PC, Heikkinen RK, Høye TT, Kissling WD, Pöyry J, Wisz MS, Luoto M (2013) Testing species distribution models across space and time: high latitude butterflies and recent warming. Glob Ecol Biogeogr 22:1293–1303CrossRefGoogle Scholar
  18. Farashi A, Shariati M, Hosseini M (2017) Identifying biodiversity hotspots for threatened mammal species in Iran. Mamm Biol 87:71–88CrossRefGoogle Scholar
  19. Farhadinia M, Nezami B, Mahdavi A, Hatami K (2007) Photos of Persian leopard in Alborz Mountains, Iran. IUCN Cat News 46:34–35Google Scholar
  20. Farhadinia MS, Moqanaki EM, Hosseini-Zavarei F (2014) Predator–prey relationships in a middle Asian montane steppe: Persian leopard versus urial wild sheep in Northeastern Iran. Eur J Wildl Res 60:341–349CrossRefGoogle Scholar
  21. Farhadinia MS, Ahmadi M, Sharbafi E, Khosravi S, Alinezhad H, Macdonald DW (2015) Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biol Conserv 191:770–778CrossRefGoogle Scholar
  22. Felix M, Gheewala SH (2011) A review of biomass energy dependency in Tanzania. Energy Procedia 9:338–343CrossRefGoogle Scholar
  23. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  24. Fischer J, Abson DJ, Butsic V, Chappell MJ, Ekroos J, Hanspach J, Kuemmerle T, Smith HG, von Wehrden H (2014) Land sparing versus land sharing: moving forward. Conserv Lett 7:149–157CrossRefGoogle Scholar
  25. Forrest JL, Wikramanayake E, Shrestha R, Areendran G, Gyeltshen K, Maheshwari A, Mazumdar S, Naidoo R, Thapa GJ, Thapa K (2012) Conservation and climate change: assessing the vulnerability of snow leopard habitat to treeline shift in the Himalaya. Biol Conserv 150:129–135CrossRefGoogle Scholar
  26. Fuentes MM, Pike DA, Dimatteo A, Wallace BP (2013) Resilience of marine turtle regional management units to climate change. Glob Chang Biol 19:1399–1406CrossRefGoogle Scholar
  27. Gavashelishvili A, Lukarevskiy V (2008) Modelling the habitat requirements of leopard Panthera pardus in west and central Asia. J Appl Ecol 45:579–588CrossRefGoogle Scholar
  28. Ghoddousi A, Hamidi AK, Ghadirian T, Ashayeri D, Khorozyan I (2010) The status of the endangered Persian leopard Panthera pardus saxicolor in Bamu National Park, Iran. Oryx 44:551–557CrossRefGoogle Scholar
  29. Habibi M (2016) Investigating the impact of climate changes on qualitative and quantitative growth of oak trees (case study: central Zagros). Open J Ecol 6:358–366CrossRefGoogle Scholar
  30. Hällfors MH, Vaara EM, Hyvärinen M, Oksanen M, Schulman LE, Siipi H, Lehvävirta S (2014) Coming to terms with the concept of moving species threatened by climate change—a systematic review of the terminology and definitions. PLoS One 9:e102979CrossRefGoogle Scholar
  31. Hamidi AK, Ghoddousi A, Soufi M, Ghadirian T, Jowkar H, Ashayeri S (2014) Camera trap study of Persian leopard in Golestan National Park, Iran. IUCN Cat News 60:12–14Google Scholar
  32. Hannah L, Midgley GF, Lovejoy T, Bond WJ, Bush MLJC, Lovett JC, Scott D, Woodward FI (2002a) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268CrossRefGoogle Scholar
  33. Hannah L, Midgley GF, Millar D (2002b) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495CrossRefGoogle Scholar
  34. Hebblewhite M, Miquelle DG, Murzin AA, Aramilev VV, Pikunov DG (2011) Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biol Conserv 144:2403–2413CrossRefGoogle Scholar
  35. Heller NE, Zavaleta ES (2009) Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol Conserv 142:14–32CrossRefGoogle Scholar
  36. Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J Appl Ecol 42:784–794CrossRefGoogle Scholar
  37. IFRWMO (2014) Iranian forests, range and watershed management organization national land use/land cover map. Forest, Range and Watershed Management Organization of Iran, Tehran. Available at Accessed 20 Jul 2014
  38. IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 3–29Google Scholar
  39. Jaafari A, Mafi Gholami D, Zenner EK (2017) A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecol Inform 39:32–44CrossRefGoogle Scholar
  40. Jowkar H, Ostrowski S, Tahbaz M, Zahler P (2016) The conservation of biodiversity in Iran: threats, challenges and hopes. Iran Stud 49:1065–1077CrossRefGoogle Scholar
  41. Karami M, Ghadirian T, Faizolahi K (2012) The atlas of mammals of Iran. Department of Environment, TehranGoogle Scholar
  42. Khorozyan I (2003) Habitat preferences by the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Armenia. Zool Middle East 30:25–36CrossRefGoogle Scholar
  43. Khorozyan I, Malkhasyan A, Asmaryan S (2005) The Persian leopard prowls its way to survival. Endanger Species Update 22(2):51Google Scholar
  44. Khorozyan IG, Malkhasyan AG, Asmaryan SG, Abramov AV (2010) Using geographical mapping and occupancy modeling to study the distribution of the critically endangered leopard (Panthera pardus) population in Armenia. In: Cushman SA, Huettmann F (eds) Spatial complexity, informatics, and wildlife conservation. Springer, Tokyo, pp 331–347CrossRefGoogle Scholar
  45. Khorozyan I, Soofi M, Hamidi AK, Ghoddousi A, Waltert M (2015) Dissatisfaction with veterinary services is associated with leopard (Panthera pardus) predation on domestic animals. PLoS One 10:e0129221CrossRefGoogle Scholar
  46. Khorozyan I, Soofi M, Soufi M, Hamidi AK, Ghoddousi A, Waltert M (2017) Effects of shepherds and dogs on livestock depredation by leopards (Panthera pardus) in north-eastern Iran. PeerJ 5:e3049CrossRefGoogle Scholar
  47. Kiabi BH, Dareshouri BF, Ghaemi RA, Jahanshahi M (2002) Population status of the Persian leopard (Panthera pardus saxicolor Pocock, 1927) in Iran. Zool Middle East 26(1):41–47Google Scholar
  48. Kuhn M (2008) The caret package. J Stat Softw 28:1–26CrossRefGoogle Scholar
  49. Lewis JS, Farnsworth ML, Burdett CL, Theobald DM, Gray M, Miller RS (2017) Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci Rep 7:44152CrossRefGoogle Scholar
  50. Lovejoy TE, Hannah L (2005) Climate change and biodiversity. Yale University Press, New HavenGoogle Scholar
  51. Maiorano L, Falcucci A, Zimmermann NE, Psomas A, Pottier J, Baisero D, Rondinini C, Guisan A, Boitani L (2011) The future of terrestrial mammals in the Mediterranean basin under climate change. Philos Trans R Soc B 366:2681–2692CrossRefGoogle Scholar
  52. Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931CrossRefGoogle Scholar
  53. Marchese C (2015) Biodiversity hotspots: a shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309CrossRefGoogle Scholar
  54. Marmion M, Luoto M, Heikkinen RK, Thuiller W (2009) The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol Model 220:3512–3520CrossRefGoogle Scholar
  55. Mawdsley JR, O’Malley R, Ojima DS (2009) A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv Biol 23:1080–1089CrossRefGoogle Scholar
  56. McArt SH, Spalinger DE, Collins WB, Schoen ER, Stevenson T, Burcho M (2009) Summer dietary nitrogen availability as a potential bottom-up constraint on moose in south-central Alaska. Ecology 90:1400–1411CrossRefGoogle Scholar
  57. Mishra C, Prins HH, Van Wieren SE (2003) Diversity, risk mediation, and change in a Trans-Himalayan agropastoral system. Hum Ecol 31:595–609CrossRefGoogle Scholar
  58. Naderi M, Farashi A, Erdi MA (2018) Persian leopard’s (Panthera pardus saxicolor) unnatural mortality factors analysis in Iran. PLoS One 13:e0195387CrossRefGoogle Scholar
  59. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  60. Rahimzadeh F, Fattahi E, Hoseini-Dastak SE (2005) Evaluation of variability of climate with applying statistical methods in Iran. J Iran Water Resour Res 1:61–73 (in Persian)Google Scholar
  61. Ramírez-Villegas J, Bueno-Cabrera A (2009) Working with climate data and niche modeling: creation of bioclimatic variables. International Center for Tropical Agriculture (CIAT), Cali, ColumbiaGoogle Scholar
  62. Rawat G (1998) Temperate and alpine grasslands of the Himalaya: ecology and conservation. Parks 8:27–36Google Scholar
  63. Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281CrossRefGoogle Scholar
  64. Riordan P, Cushman SA, Mallon D, Shi K, Hughes J (2016) Predicting global population connectivity and targeting conservation action for snow leopard across its range. Ecography 39:419–426CrossRefGoogle Scholar
  65. Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002) The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52:891–904CrossRefGoogle Scholar
  66. Sanei A, Mousavi M, Kiabi BH, Masoud MR, Mardi EG, Mohamadi H, Shakiba M, Zehi AB, Teimouri M, Raeesi T (2016) Status assessment of the Persian leopard in Iran. IUCN Cat News, Special Issue 10:43–50Google Scholar
  67. Sangoony H, Vahabi M, Tarkesh M, Soltani S (2016) Range shift of Bromus tomentellus Boiss. as a reaction to climate change in Central Zagros, Iran. Appl Ecol Environ Res 14:85–100CrossRefGoogle Scholar
  68. Senay SD, Worner SP, Ikeda T (2013) Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLoS One 8:e71218CrossRefGoogle Scholar
  69. Stein AB, Hayssen V (2013) Panthera pardus (Carnivora: Felidae). Mamm Species 45:30–48CrossRefGoogle Scholar
  70. Stein AB, Athreya V, Gerngross P, Balme G, Henschel P, Karanth U, Miquelle D, Rostro-Garcia S, Kamler JF, Laguardia A, Khorozyan I, Ghoddousi A (2016) Panthera pardus. (errata version published in 2016) The IUCN red list of threatened species 2016: e.T15954A102421779. Accessed 20 Feb 2017Google Scholar
  71. Sugden AM (2017) Consequences of shifting species distributions. Science 355:1386–1388Google Scholar
  72. Sunquist ME, Sunquist FC (2001) Changing landscapes: consequences for carnivores. In: Gittleman JL, Funk SM, MacDonald DW, Wayne RK (eds) Carnivore conservation. Conservation biology 5. Cambridge University Press, Cambridge, pp 399–418Google Scholar
  73. Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, De Siqueira MF, Grainger A, Hannah L, Hughes L (2004) Extinction risk from climate change. Nature 427:145–148CrossRefGoogle Scholar
  74. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  75. Thuiller W, Georges D, Engler R, Breiner F, Georges MD, Thuiller CW (2016) Package ‘biomod2’.
  76. White KS, Gregovich DP, Levi T (2018) Projecting the future of an alpine ungulate under climate change scenarios. Glob Chang Biol 24:1136–1149CrossRefGoogle Scholar
  77. Williams L, Zazanashvili N, Sanadiradze G, Kandaurov A (2006) An ecoregional conservation plan for the Caucasus. WWF Caucasus Programme Office, TbilisiGoogle Scholar
  78. Yangzong C (2006) The household responsibility contract system and the question of grassland protection. A case study from the Chang Tang, northwest Tibet Autonomous Region. MSc. Thesis, University of Tromsø, Tromsø, NorwayGoogle Scholar
  79. Zanin M, Palomares F, Brito D (2015) What we (don’t) know about the effects of habitat loss and fragmentation on felids. Oryx 49:96–106CrossRefGoogle Scholar
  80. Zazanashvili N, Morschel F, Askerov E, Manvelyan K, Krever V, Farvar T, Kalem S (2007) Conservation of the leopard in the Caucasus. IUCN Cat News 2:4–8Google Scholar
  81. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Meth Ecol Evol 1:3–14CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  • Mohammad Reza Ashrafzadeh
    • 1
    Email author
  • Ali Asghar Naghipour
    • 1
  • Maryam Haidarian
    • 2
  • Igor Khorozyan
    • 3
  1. 1.Faculty of Natural Resources and Earth SciencesShahrekord UniversityShahrekordIran
  2. 2.Faculty of Natural ResourcesSari University of Agricultural Sciences and Natural ResourcesSariIran
  3. 3.Workgroup on Endangered Species, J.F. Blumenbach Institute of Zoology and AnthropologyGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations