Mammal Research

, Volume 63, Issue 3, pp 255–265 | Cite as

Recolonizing lost habitat—how European beavers (Castor fiber) return to south-western Germany

  • Sabrina Mai
  • Markus Weinhardt
  • Rainer Allgöwer
  • Stefan MerkerEmail author
Original Paper


For the last decades, the European beaver (Castor fiber) has been recolonizing its original habitats. Reintroductions of beavers from different relict populations into southern Germany have resulted in several admixed populations, which are spreading out along various river systems. The eastern part of the German state of Baden-Württemberg is a melting pot of colonization waves originating from various introduced populations. The aim of this study was to exemplify origins and dispersal behaviour of beavers in this region using genetic fingerprint methods. Sequence analysis of hypervariable region 1 (HV1) of the mitochondrial control region and fragment length analyses at 11 microsatellite loci resulted in genetic profiles for 84 samples. The study region is being populated from three different local origins of beavers: the north of the Main-Tauber district, the Neckar River near the city of Mosbach and the Danube tributaries in the east. Main-Tauber samples were most diverse, including microsatellite alleles and HV1 haplotypes specific to C. f. albicus (from the German Elbe relict population). In view of the geographical proximity of this region to a release site of C. f. albicus in the Spessart area, this finding strongly suggests gene flow between beaver populations of different provenience. Two remaining local origins at the Neckar and Danube tributaries are closely related to each other, thus possibly descending from the same original (admixed) population. This study is intended to serve as a starting point for follow-up fine-scale research into dispersal behaviour of European beavers currently recolonizing their original habitats.


Dispersal Haplotypes Microsatellites Recolonization Reintroduction 



We thank Regierungspräsidium Stuttgart (Referat 56) for the special permit allowing us to set up hair traps. We thank the team at CVUA Stuttgart (Chemisches und Veterinäruntersuchungsamt Stuttgart) and A. Weber (Office for Wildlife Research and Conservation, Jeggau) for providing tissue samples from beavers found dead. We also thank K.-H. Geier (Landratsamt Main-Tauber-Kreis) and the local beaver conflict managers (Biberberater), especially P. Kuch, S. Dehner and K. Fahrmeier, for collecting hair samples and providing information on beaver territories. Additionally, we are grateful to W. Beyer and his team from the Institute of Animal Science of the University of Hohenheim for granting us access to their automated sequencer and to C. Leidenroth for assisting with sample acquisition.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

13364_2018_360_MOESM1_ESM.pdf (107 kb)
ESM 1 (PDF 106 kb)
13364_2018_360_MOESM2_ESM.pdf (93 kb)
ESM 2 (PDF 93 kb)
13364_2018_360_MOESM3_ESM.xlsx (19 kb)
ESM 3 (XLSX 18 kb)
13364_2018_360_MOESM4_ESM.pdf (788 kb)
ESM 4 (PDF 787 kb)
13364_2018_360_MOESM5_ESM.pdf (99 kb)
ESM 5 (PDF 99 kb)
13364_2018_360_MOESM6_ESM.pdf (102 kb)
ESM 6 (PDF 101 kb)
13364_2018_360_MOESM7_ESM.pdf (121 kb)
ESM 7 (PDF 120 kb)


  1. Allgöwer R (2005) Biber (Castor fiber). In: Braun M, Dieterlen F (eds) Die Säugetiere Baden-Württembergs: Insektenfresser (Insectivora), Hasentiere (Lagomorpha), Nagetiere (Rodentia), Raubtiere (Carnivora), Paarhufer (Artiodactyla), Ulmer, Stuttgart, pp 181–189Google Scholar
  2. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57(1):289–300Google Scholar
  3. Crawford JC, Liu Z, Nelson TA, Nielsen CK, Bloomquist CK (2008) Isolation and characterization of microsatellite loci in the beaver (Castor canadensis). Mol Ecol Resour 8(3):616–618. CrossRefPubMedGoogle Scholar
  4. Denk M (2010/2011) Artgutachten: Bundesstichproben- und Landesmonitoring zur Situation des Bibers (Castor fiber) in Hessen. Hessen-Forst FENAGoogle Scholar
  5. Dežkin VV, Safonov VG (1972) Die Biber der alten und neuen Welt, 1st edn. Die neue Brehm-Bücherei, vol 437. A. Ziemsen Verlag, Wittenberg LutherstadtGoogle Scholar
  6. Kostenlose Karten: Deutschland & Bundesländer (n.d.) Accessed 18 August 2016
  7. Durka W, Babik W, Ducroz J-F, Heidecke D, Rosell F, Samjaa R, Saveljev AP, Stubbe A, Ulevicius A, Stubbe M (2005) Mitochondrial phylogeography of the Eurasian beaver Castor fiber L. Mol Ecol 14(12):3843–3856. CrossRefPubMedGoogle Scholar
  8. Earl DA, von Holdt BM (2012) Structure Harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. CrossRefGoogle Scholar
  9. Ellegren H, Hartman G, Johansson M, Andersson L (1993) Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci U S A 90(17):8150–8153CrossRefPubMedPubMedCentralGoogle Scholar
  10. Enserink M, Vogel G (2006) Wildlife conservation. The carnivore comeback. Science 314(5800):746–749. CrossRefPubMedGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14(8):2611–2620. CrossRefPubMedGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  13. Frosch C, Haase P, Nowak C (2011) First set of microsatellite markers for genetic characterization of the Eurasian beaver (Castor fiber) based on tissue and hair samples. Eur J Wildl Res 57(3):679–682. CrossRefGoogle Scholar
  14. Frosch C, Kraus RHS, Angst C, Allgöwer R, Michaux J, Teubner J, Nowak C, Canestrelli D (2014) The genetic legacy of multiple beaver reintroductions in Central Europe. PLoS One 9(5):e97619. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Guedj B, Guillot G (2011) Estimating the location and shape of hybrid zones. Mol Ecol Resour 11(6):1119–1123. CrossRefPubMedGoogle Scholar
  16. Guillot G (2008) Inference of structure in subdivided populations at low levels of genetic differentiation—the correlated allele frequencies model revisited. Bioinformatics 24(19):2222–2228. CrossRefPubMedGoogle Scholar
  17. Guillot G, Santos F (2010) Using AFLP markers and the Geneland program for the inference of population genetic structure. Mol Ecol Resour 10(6):1082–1084. CrossRefPubMedGoogle Scholar
  18. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170(3):1261–1280.
  19. Guillot G, Mortier F, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715. CrossRefGoogle Scholar
  20. Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24(11):1406–1407. CrossRefPubMedGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  22. Hamilton WD (1972) Altruism and related phenomena, mainly in social insects. Annu Rev Ecol Syst 3(1):193–232. CrossRefGoogle Scholar
  23. Hermann N, Voß C, Menzel S (2013) Wildlife value orientations as predicting factors in support of reintroducing bison and of wolves migrating to Germany. J Nat Conserv 21(3):125–132. CrossRefGoogle Scholar
  24. Herr J, Schley L (2009) Barbed wire hair traps as a tool for remotely collecting hair samples from beavers (Castor sp.) Lutra 52(2):123–127Google Scholar
  25. Hinze G (1950) Der Biber: Körperbau und Lebensweise. Verbreitung und Geschichte, Akademie, BerlinGoogle Scholar
  26. Holleley CE, Geerts PG (2009) Multiplex Manager 1.0: a cross-platform computer program that plans and optimizes multipley PCR. BioTechniques 46(7):511–517CrossRefPubMedGoogle Scholar
  27. Horn S, Prost S, Stiller M, Makowiecki D, Kuznetsova T, Benecke N, Pucher E, Hufthammer AK, Schouwenburg C, Shapiro B, Hofreiter M (2014) Ancient mitochondrial DNA and the genetic history of Eurasian beaver (Castor fiber) in Europe. Mol Ecol 23(7):1717–1729. CrossRefPubMedGoogle Scholar
  28. HydeSoft Computing LLC: DPlot Jr (n.d.). Accessed 3 March 2016
  29. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16(5):1099–1106. CrossRefPubMedGoogle Scholar
  30. Koressaar T, Remm M (2012) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291CrossRefGoogle Scholar
  31. Kühn R, Schwab G, Schröder W, Rottmann O (2002) Molecular sex diagnosis in castoridae. Zoo Biol 21(3):305–308. CrossRefGoogle Scholar
  32. Minnig S, Angst C, Jacob G (2016) Genetic monitoring of Eurasian beaver (Castor fiber) in Switzerland and implications for the management of the species. Russ J Theriol 15(1):20–27CrossRefGoogle Scholar
  33. Nolet BA, Rosell F (1998) Comeback of the beaver Castor fiber: an overview of old and new conservation problems. Biol Conserv (75):125–137Google Scholar
  34. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6(1):288–295CrossRefGoogle Scholar
  35. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  36. Pepper JW (2000) Relatedness in trait group models of social evolution. J Theor Biol 206(3):355–368. CrossRefPubMedGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  38. QIAGEN Purification of total DNA from nails hair or feathers using the DNeasy Blood Tissue Kit (n.d.). Accessed 3 March 2016
  39. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105(3):767–779PubMedPubMedCentralGoogle Scholar
  40. Safner T, Miller MP, McRae BH, Fortin M-J, Manel S (2011) Comparison of Bayesian clustering and edge detection methods for inferring boundaries in landscape genetics. IJMS 12(12):865–889. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139(1):457–462PubMedPubMedCentralGoogle Scholar
  42. Syrůčková A, Saveljev AP, Frosch C, Durka W, Savelyev AA, Munclinger P (2015) Genetic relationships within colonies suggest genetic monogamy in the Eurasian beaver (Castor fiber). Mammal Res 60(2):139–147. CrossRefGoogle Scholar
  43. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Untergasser A, Cutcutache I, Koressaar T, Ye J, Fairchloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115CrossRefPubMedPubMedCentralGoogle Scholar
  45. Valachovič D (2009-2012) Manual of beaver management within the Danube river basinGoogle Scholar
  46. van de Casteele T, Galbusera P, Matthysen E (2001) A comparison of microsatellite-based pairwise relatedness estimators. Mol Ecol 10(6):1539–1549. CrossRefPubMedGoogle Scholar
  47. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. CrossRefGoogle Scholar
  48. Wahlund S (1928) Composition of populations and correlation appearances viewed in relation to the studies of inheritance. Hereditas 11:65–106CrossRefGoogle Scholar
  49. Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89(03).
  50. Wang J (2011) COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11(1):141–145. CrossRefPubMedGoogle Scholar
  51. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22(20):4354–4355CrossRefPubMedPubMedCentralGoogle Scholar
  52. Williams CL, Breck SW, Baker BW (2004) Genetic methods improve accuracy of gender determination in beavers. J Mammal 85(6):1145–1148. CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2018

Authors and Affiliations

  1. 1.Department of ZoologyState Museum of Natural History StuttgartStuttgartGermany
  2. 2.Institute of ZoologyUniversity of HohenheimStuttgartGermany
  3. 3.Büro für ÖkosystemforschungMühlackerGermany

Personalised recommendations