Time allocation and patterns of activity of the dorcas gazelle (Gazella dorcas) in a sahelian habitat

Original Paper
  • 68 Downloads

Abstract

The patterns of activity are a reflection of the adaptation of a species to its habitat. This study reports the patterns of activity and time allocation of the dorcas gazelle following their reintroduction process from the captivity to semi-wild conditions in a sahelian habitat. Activity of three adult males was recorded using GPS collars equipped with a temperature sensor and acceleration sensors recording in two channels, forward–backward (X-axis) and sideways (Y-axis). Collars delivered data for 59, 139 and 151 days. The aim of this work is to assess the ability of dorcas gazelle to adapt its activity schedule to a changing environment. The main activity behaviour observed is resting (59.8 ± 23.9%), followed by feeding (20.9 ± 10.9%), displacement (15.1 ± 14.1%) and running (3.9 ± 5.5%). If resting time is eliminated, the gazelles invest most of their time in feeding (61.0 ± 21.3%) and displacements (30.8 ± 15.6%) and only 7.6 ± 0.6% in running. The dorcas gazelle exhibit three patterns of activity: one diurnal with maximum activity in the central hours of the day, which accounts during the dry-cool season (December, January and February); a bimodal pattern with maximum activity at dust and dark, resting in the middle of the day during the hot-dry season (April) and a transitional pattern in March. Temperature is the main driver of this change in patterns; when average temperature exceeds the body temperature of the dorcas gazelle, the pattern of activity changes from diurnal to bimodal. These results reveal the ability of the dorcas gazelles facing environmental changing conditions in their native habitat.

Keywords

Gazella dorcas Time-pattern activity Temporal niche Wildlife reintroduction Sahel 

Notes

Acknowledgements

The authors thank the staff of the Direction of National Parks in Dakar as well as in the Guembeul Special Fauna Reserve and North Ferlo Fauna Reserve and Katané for providing technical and field assistance. The authors are also grateful to Ousmane Sonko, Cheikh Ndiaye and M Diediou. We thank Alberto Ruiz for managing the data and figures and to Roberto Lázaro for early comments on this work. We thank three anonymous reviewers for their helpful comments. This study was funded by the Spanish National Research Council (CSIC, Economic and Innovation Ministry), the Barcelona Zoo (BSMSA, Barcelona Municipality) and the Direction of National Parks of Senegal (Environment Ministry).

References

  1. Abáigar T, Youm B, Niaga M, Ensenyat C, Cano M (2009) The role of Senegal in the recovery of thee Sahelo-Saharan antelope species: the case of the reintroduction of dorcas gazelle. Gnusletter 28:6–8Google Scholar
  2. Abáigar T, Cano M, Ensenyat C (2013) Habitat preference of reintroduced dorcas gazelles (Gazella dorcas neglecta) in North Ferlo, Senegal. J Arid Environ 97:176–181CrossRefGoogle Scholar
  3. Abáigar T, Cano M, Djigo CAT, Gomis J, Sarr T, Youm B, Fernández-Bellon H, Ensenyat C (2015) Social organization and demography of reintroduced dorcas gazelle (Gazella dorcas neglecta) in North Ferlo Fauna Reserve, Senegal. Mammalia 80(6):593–600Google Scholar
  4. Alados CL (1986a) Time distribution in the Spanish ibex, Capra pyrenaica. Biol Behav 11:70–82Google Scholar
  5. Alados CL (1986b) Ritmo de actividad en Gazella dorcas. Doñana Acta Vertebrata 13:131–146Google Scholar
  6. Alcock A (1984) Animal behaviour: an evolutionary approach. Sinauers Ass, SunderlandGoogle Scholar
  7. Baharav D (1982) Desert habitat partitioning by the dorcas gazelle. J Arid Environ 5:323–335Google Scholar
  8. Belovsky GE, Slade JB (1986) Time budgets of grassland herbivores: body size similarities. Oecologia 70:53–62CrossRefPubMedGoogle Scholar
  9. Bunnell FL, Harestad AS (1989) Activity budgets and body weight in mammals. How sloppy can mammals be? Curr Mamm 2:245–305Google Scholar
  10. Castillo-Ruiz A, Paul MJ, Schwartz WJ (2012) In search of a temporal niche: social interactions. Prog Brain Res 199:267–280CrossRefPubMedGoogle Scholar
  11. Davimes JG, Alagaili AN, Gravett N, Bertelsen MF, Mohammed OB, Ismail K, Bennett NC, Manger PR (2016) Arabian Oryx (Oryx leucoryx) respond to increased ambient temperatures with a seasonal shift in the timing of their daily inactivity patterns. J Biol Rhythm 20(10):1–10Google Scholar
  12. Ensing EP, Ciuti S, de Wijs FALM, Lentferink DH, ten Hoedt A, Boyce MS, Hut RA (2014) GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): indication for a weak circadian clock in ungulates. PLoS One 9(9):1–11CrossRefGoogle Scholar
  13. Favreau A, Richard-Yris M-A, Bertin A, Houdelier C, Lumineau S (2009) Social influences on circadian behavioural rhythms in vertebrates. Anim Behav 77:983–989CrossRefGoogle Scholar
  14. Georgii B, Schröder W (1983) Home range and activity patterns of male red deer (Cervus elaphus L.) in the Alps. Oecologia 58:238–248CrossRefPubMedGoogle Scholar
  15. Ghobrial LI, Cloudsley-Thompson JL (1976) Daily cycle of activity of the Dorcas Gazelle in the Sudan. J Interdis Cycle Res 7(1):47–50Google Scholar
  16. Giotto N, Picot D, Maublanc M-L, Gerard JF (2013) Effects of seasonal heat on the activity rhythm, habitat use, and space use of the Beira antelope in southern Djibouti. J Arid Environ 89:5–12CrossRefGoogle Scholar
  17. Hetem RS, Strauss WM, Fick LG, Maloney SK, Meyer LCR, Shobrak M, Fuller A, Mitchell D (2010) Variation in the daily rhythm of body temperature of free-living Arabian oryx (Oryx leucoryx): does water limitation drive heterothermy? J Comp Physiol B 180:1111–1119CrossRefPubMedGoogle Scholar
  18. Hetem RS, Strauss WM, Fick LG, Maloney SK, Meyer LCR, Shobrak M, Fuller A, Mitchell D (2012) Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert. J Comp Physiol B 182:437–449CrossRefPubMedGoogle Scholar
  19. Heurich M, Traube M, Stache A, Löttker P (2012) Calibration of remotely collected acceleration data with behavioral observations of roe deer (Capreolus capreolus L.) Acta Theriol 57:251–255CrossRefGoogle Scholar
  20. Hut RA, Kronfeld-Schor N, van der Vinne V, De la Iglesia H (2012) In search of a temporal niche: environmental factors. Prog Brain Res 199:281–304CrossRefPubMedGoogle Scholar
  21. IUCN Red List of Threatened Species. Version 2016–2. www.iucnredlist.org. Downloaded on 28 September 2016
  22. Jacks B, Sall M, Pettersson A (1995) Leptadenia hastata—ecology, use and nutritional value. J d'agriculture traditionnelle et de botanique appliquée, 37e année, bulletin 2:37–50Google Scholar
  23. Jebali A (2008) Déclin de la faune sahelo-saharienne et tentative de réintroduction d’antilopes dans des habitats restaurés : cas de l’oryx algazelle (Oryx dammah) et de la gazelle dama (Gazella dama mhorr) dans la réserve de faune de Ferlo Nord (Sénégal). PhD thesis, Museum National d’Histoire Naturelle, ParisGoogle Scholar
  24. Krop-Benesch A, Berger A, Hofer H, Heurich M (2013) Long-term measurement of roe deer (Capreolus capreolus) (Mammalia: Cervidae) activity using two-axis accelerometers in GPS-collars. Ital J Zool 80(1):69–81CrossRefGoogle Scholar
  25. Li B, Lin G, Zhao X, Su J, Zhang T (2014) Diurnal time budget and behavioral rhythms of white-lipped deer Cervus albirostris in the Qilian mountains of Qinghai, China Pakistan. J Zool 46(86):1557–1563Google Scholar
  26. Lima SL (1998) Nonlethal effects in the ecology of predator–prey interactions. Bioscience 48:25–34CrossRefGoogle Scholar
  27. Lourens S, Nel AJ (1990) Winter activity of bat-eared foxes Otocyon megalotis on the cape west-coast. S Afr J Zool 25:24–132Google Scholar
  28. Massé A, Côté SD (2013) Spatiotemporal variations in resources affect activity and movement patterns of white-tailed deer (Odocoileus virginianus) at high density. Can J Zool 91:252–263CrossRefGoogle Scholar
  29. Ostrowski S, Williams JB (2006) Heterothermy of free-living Arabian sand gazelles (Gazella subgutturosa marica) in a desert environment. J Exp Biol 209:1421–1429CrossRefPubMedGoogle Scholar
  30. Ostrowski S, Williams JB, Ismael K (2003) Heterothermy and the water economy of free-living Arabian oryx (Oryx leucoryx). J Exp Biol 206:1471–1478CrossRefPubMedGoogle Scholar
  31. Owen-Smith N (1998) How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu. J Zool (Lond) 246:183–192CrossRefGoogle Scholar
  32. Owen-Smith N (2013) Daily movement responses by African savanna ungulates as an indicator of seasonal and annual food stress. Wildl Res 40:232–240CrossRefGoogle Scholar
  33. Owen-Smith N, Goodall V (2014) Coping with savanna seasonality: comparative daily activity patterns of African ungulates as revealed by GPS telemetry. J Zool 293:181–191CrossRefGoogle Scholar
  34. Pagon N, Grignolio S, Pipia A, Bongi P, Bertolucci C, Apollonio M (2013) Seasonal variation of activity patterns in roe deer in a temperate forested area. Chronobiol Int 30(6):772–785CrossRefPubMedGoogle Scholar
  35. Pipia A, Ciuti S, Grignolio S, Luchetti S, Madau R, Apollonio M (2008) Influence of sex, season, temperature and reproductive status on daily activity patterns in Sardinian mouflon (Ovis orientalis musimon). Behaviour 145:1723–1745CrossRefGoogle Scholar
  36. Pita R, Mira A, Beja P (2011) Circadian activity rhythms in relation to season, sex and interspecific interactions in two Mediterranean voles Anim. Behaviour 81:1023–1030CrossRefGoogle Scholar
  37. Refinetti T (2008) The diversity of temporal niches in mammals. Biol Rhythm Res 39(3):173–192CrossRefGoogle Scholar
  38. Reinberg AE (2003) Chronobiologie Médicale, Chrono-thérapeutique. Médecine-France Flammarion, ParisGoogle Scholar
  39. Tadesse SA, Kotler BP (2011) The seasonal responses of habitat use by Nubian ibex (Capra nubiana) evaluated with behavioural indictors. Isr J Ecol Evol 57:223–246CrossRefGoogle Scholar
  40. Tadesse SA, Kotler BP (2014) Effects of habitat, group-size, sex-age class and seasonal variation on the behavioural responses of the mountain nyala (Tragelaphus buxtoni) in Munessa, Ethiopia. J Trop Ecol 30:33–43CrossRefGoogle Scholar
  41. UNEP/CMS (2005) Sahelo-saharan antelopes. Status and perspectives. Report on the conservation status of the six Sahelo-saharan antelopes. In: Beudels RC, Devillers P, Lafontaine R-M, Devillers-Terschuren J, Beudels M-O (eds) CMS SSA concerted action, CMS Technical series publication n° 11, 2nd edn. UNEP/CMS Secretariat, BonnGoogle Scholar
  42. Ward D, Saltz D (1994) Foraging at different spatial scales: dorcas gazelles foraging for lilies in the Negev desert. Ecology 75(1):48–58CrossRefGoogle Scholar
  43. Wronski T, Schulz-Kornas E (2015) The Farasan gazelle—a frugivorous browser in an arid environment? Mamm Biol 80:87–95CrossRefGoogle Scholar
  44. Xia C, Yang W, Blank D, Xu W, Qiao J, Liu W (2011) Diurnal time budget of goitered gazelles (Gazella subgutturosa Güldenstaedt, 1780) in Xinjiang, China. Mammalia 75:235–242CrossRefGoogle Scholar
  45. Yamazaki K, Kozakai C, Kasai S, Goto Y, Koike S, Furubayashi K (2008) A preliminary evaluation of activity-sensing GPS collars for estimating daily activity patterns of Japanese black bears. Ursus 19(2):154–161CrossRefGoogle Scholar
  46. Yihune M, Bekele A (2012) Population status, feeding ecology and activity patters of Grant’s gazelle (Gazella granti) in Abijata-Shala Lakes National Park, Ethiopia. Asian J Biol Sci 5(1):20–29CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2017

Authors and Affiliations

  1. 1.Estación Experimental de Zonas Áridas (CSIC)AlmeríaSpain
  2. 2.Parc ZoologicBarcelonaSpain

Personalised recommendations