Advertisement

Acta Theriologica

, Volume 58, Issue 3, pp 255–265 | Cite as

Chromosomal variation in social voles: a Robertsonian fusion in Günther’s vole

  • Jan Zima
  • Atilla Arslan
  • Petr Benda
  • Miloš Macholán
  • Boris Kryštufek
Original Paper

Abstract

The study reports on chromosomes in several populations of social voles from south-eastern Europe and the Middle East. The standard karyotypes of individuals of Microtus hartingi and Microtus guentheri originating from both south-eastern Europe and Asia Minor comprised 54 mostly acrocentric chromosomes. However, variation between populations was found in the amount and distribution of C-heterochromatin in certain autosomes and the sex chromosomes. Furthermore, a specific pattern of argyrophilic nucleolar organizer region distribution was recorded in different geographic populations. In a population from Asia Minor, a heterozygous centric fusion of two autosomes was found. The G-banded karyotypes of M. guentheri and Microtus socialis were compared, and tandem fusions of autosomes were suggested as possible mechanism of the divergence. The karyotypes of the nine currently recognized species of social voles are reviewed, and implications of chromosomal data for systematics are evaluated.

Keywords

Karyotypes Systematics Microtus guentheri M. hartingi M. socialis C-banding NOR distribution 

References

  1. Akhverdyan MN, Lyapunova EA (1990) Karyotypic divergence in Microtus socialis schidlovskii Argyropulo, 1933 in Armenia. In: Evolutionary and genetic studies in mammals, vol 2. Vladivostok, pp 63–64 (in Russian)Google Scholar
  2. Akhverdyan MN, Lyapunova EA, Vorontsov NN (1992) Karyology and systematics of pine voles from the Caucasus and Transcaucasia (Terricola, Arvicolinae, Rodentia). Zool Zh 71:96–109, in Russian, English summaryGoogle Scholar
  3. Akhverdyan MN, Vorontsov NN, Lyapunova EA (1990) The species status of Microtus schidlovskii Argyropulo, 1933 (Rodentia, Cricetidae) from western Armenia. Biol Zh Armenia 44:260–265 (in Russian)Google Scholar
  4. Aşan Baydemir N, Albayrak I, Gözütok S (2011) Cytogenetic study on Microtus guentheri (Danford and Alston, 1880) (Mammalia: Rodentia) from Turkey: constitutive heterochromatin distribution and nucleolar organizer regions. Folia Biol (Kraków) 59:35–40. doi: 10.3409/fb59_1-2.35-40 CrossRefGoogle Scholar
  5. Aulagnier S, Haffner P, Mitchell-Jones AJ, Moutou F, Zima J (2009) Mammals of Europe, North Africa and the Middle East. A&C Black, LondonGoogle Scholar
  6. Ayrumyan KA, Akhverdyan MR, Vorontsov NN, Ivnitskii SB (1986) On the systematic status of Microtus socialis schidlovskii Argyropulo, 1933. In: Proceedings of the IVth congress of the All-Union Mammalogical Society, Moscow 1 (in Russian), February 20-25, 1986, Moscow 1:42–44Google Scholar
  7. Belcheva R, Peshev TH, Peshev TD (1980) Chromosome C- and G-banding patterns in a Bulgarian population of M. guentheri Danford and Alston (Microtinae, Rodentia). Genetica 52–53:45–48Google Scholar
  8. Borodin PM, Sablina OV, Rodionova MI (1995) Pattern of X–Y chromosome pairing in microtine rodents. Hereditas 123:17–23. doi: 10.1111/j.1601-5223.1995.00017.x PubMedCrossRefGoogle Scholar
  9. Burgos M, Olmos DM, Jiménéz R, Sánchez A, Diaz de la Guardia R (1990) Fluorescence banding in four species of Microtidae: an analysis of the evolutive changes of the constitutive heterochromatin. Genetica 81:11–16. doi: 10.1007/BF00055231 PubMedCrossRefGoogle Scholar
  10. Chassovnikarova TG, Markov GG, Atanassov NI, Dimitrov HA (2008) Sex chromosome polymorphism in Bulgarian populations of Microtus guentheri (Danford & Alston, 1880). J Nat Hist 42:261–267. doi: 10.1080/00222930701835100 CrossRefGoogle Scholar
  11. Çolak E, Sözen M, Yiğit N (1998) A study on ecology and biology of Microtus guentheri Danford and Alston, 1880 (Mammalia: Rodentia) in Turkey. Turk J Zool 22:289–295Google Scholar
  12. Çolak E, Yiğit N, Sözen M, Özkurt Ş (1997) Distribution and taxonomic status of the genus Microtus (Mammalia: Rodentia) in southeastern Turkey. Israel J Zool 43:391–396Google Scholar
  13. Corbet GB (1978) The mammals of the Palaearctic region: a taxonomic review. British Museum (Natural History), LondonGoogle Scholar
  14. Ellerman JR, Morrison-Scott TCS (1951) Checklist of Palaearctic and Indian mammals 1758 to 1946. British Museum (Natural History), LondonGoogle Scholar
  15. Gaichenko VA (1973) The chromosome complement and a description of an anomalous karyotype in Microtus socialis Pall. In: Proceedings of the VIIth research conference. Naukova Dumka, Kiev, pp.16–18 (in Russian)Google Scholar
  16. Golenishchev FN, Malikov VG, Arbobi M, Bulatova NS, Sablina OV, Polyakov AV (1999) Some new data on taxonomy of the genus Microtus (Rodentia, Arvicolinae) from Iran. Proc Zool Inst RAS 281:15–20Google Scholar
  17. Golenishchev FN, Malikov VG, Nazari F, Vaziri AS, Sablina OV, Polyakov AV (2002a) New species of vole of “guentheri” group (Rodentia, Arvicolinae, Microtus) from Iran. Russ J Theriol 1:117–123Google Scholar
  18. Golenishchev FN, Sablina OV, Borodin PV, Gerasimov S (2002b) Taxonomy of voles of the subgenus Sumeriomys Argyropulo, 1933 (Rodentia, Arvicolinae, Microtus). Russ J Theriol 1:43–55Google Scholar
  19. Gözütok S, Albayrak I (2009) Biology and ecology of the species of the genus Microtus (Schrank, 1798) in Kırıkkale province (Mammalia: Rodentia). Int J Nat Eng Sci 3:94–101Google Scholar
  20. Horn A, Basset P, Yannic G, Banaszek A, Borodin PM, Bulatova NS, Jadwiszczak K, Jones RM, Polyakov AV, Ratkiewicz M, Searle JB, Shchipanov NA, Zima J, Hausser J (2012) Chromosomal rearrangements do not seem to affect the gene flow in hybrid zones between karyotypic races of the common shrew (Sorex araneus). Evolution 66:882–889. doi: 10.1111/j.1558-5646.2011.01478.x PubMedCrossRefGoogle Scholar
  21. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1 step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  22. Jaarola M, Martínková N, Gündüz I, Brunhoff C, Zima J, Nadachowski A, Amori G, Bulatova N, Chondropoulos B, Fraguedakis-Tsolis S, González-Esteban J, Lopez-Fuster MJ, Kandaurov A, Mathias ML, Tez C, Villate I, Searle JB (2004) Molecular phylogeny of the speciose vole genus Microtus (Arvicolinae, Rodentia) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 33:647–663. doi: 10.1016/j.ympev.2004.07.015 PubMedCrossRefGoogle Scholar
  23. Kefelioğlu H (1995) The taxonomy of the genus Microtus (Mammalia: Rodentia) and its distribution in Turkey. Turk J Zool 19:35–63, in Turkish, English summaryGoogle Scholar
  24. Kefelioğlu H, Kryštufek B (1999) The taxonomy of Microtus socialis group (Rodentia: Microtinae) in Turkey, with description of a new species. J Nat Hist 33:289–303. doi: 10.1080/002229399300425 CrossRefGoogle Scholar
  25. Kryštufek B, Bužan EV, Vohralík V, Zareie R, Özkan B (2009) Mitochondrial cytochrome b sequence yields new insight into the speciation of social voles in south-west Asia. Biol J Linn Soc 98:121–128CrossRefGoogle Scholar
  26. Kryštufek B, Kefelioğlu H (2001a) Redescription and species limit of Microtus irani Thomas, 1921, and description of a new social vole from Turkey (Mammalia: Arvicolinae). Bonner Zool Beitr 50:1–14Google Scholar
  27. Kryštufek B, Kefelioğlu H (2001b) The social vole Microtus socialis in the Near East. Mammal Rev 31:229–237. doi: 10.1046/j.1365-2907.2001.00088.x CrossRefGoogle Scholar
  28. Kryštufek B, Vohralík V (2005) Mammals of Turkey and Cyprus. Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae. Založba Annales, KoperGoogle Scholar
  29. Kryštufek B, Vohralík V (2009) Mammals of Turkey and Cyprus. Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae. Založba Annales, KoperGoogle Scholar
  30. Kryštufek B, Vohralík V, Zima J, Koubínová D, Buzan EV (2010) A new subspecies of the Iranian vole, Microtus irani Thomas, 1921, from Turkey. Zool Middle East 50:11–20CrossRefGoogle Scholar
  31. Kryštufek B, Zorenko T, Buzan EV (2012) New insights into the taxonomy and phylogeny of social voles inferred from mitochondrial cytochrome b sequences. Mamm Biol 77:178–182. doi: 10.1016/j.mambio.2011.11.007 Google Scholar
  32. Kuliev GN (1979) Karyological characteristics of certain microtine rodents from Azerbaijan. PhD Thesis, Azerbaijan National Academy of Sciences (in Russian)Google Scholar
  33. Macholán M, Filippucci MG, Zima J (2001) Genetic variation and zoogeography of pine voles of the Microtus subterraneus/majori group in Europe and Asia Minor. J Zool 255:31–42. doi: 10.1017/S0952836901001091 CrossRefGoogle Scholar
  34. Marchall JA, Acosta MJ, Bullejos M, De La Guardia RD, Sanchez A (2004) A repeat DNA sequence from the Y chromosome in species of the genus Microtus. Chrom Res 12:757–765. doi: 10.1007/s10577-005-5079-y CrossRefGoogle Scholar
  35. Matthey R (1952) Chromosomes de Muridae III. Experientia 8:463–464PubMedCrossRefGoogle Scholar
  36. Matthey R (1954) Nouvelles recherches sur les chromosomes des Muridae. Caryologia 9:1–44Google Scholar
  37. Mitsainas GP, Rovatsos MT, Giagia-Athanasopoulou EB (2010) Heterochromatin study and geographical distribution of Microtus species (Rodentia, Arvicolinae) from Greece. Mamm Biol 75:261–269. doi: 10.1016/j.mambio.2008.11.001 Google Scholar
  38. Modi WS (1993) Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays. Cytogenet Cell Genet 62:142–148. doi: 10.1159/000133458 PubMedCrossRefGoogle Scholar
  39. Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DAM (eds) Mammal species of the world. A taxonomic and geographic reference, vol 2, 3rd edn. John Hopkins University Press, Baltimore, pp 894–1531Google Scholar
  40. O’Brien SJ, Menninger JC, Nash WG (2006) Atlas of mammalian chromosomes. Wiley, HobokenCrossRefGoogle Scholar
  41. Orlov VN (1970) Evolutionary aspects of chromosomal divergence in mammals. Zool Zh 59:813–830 (in Russian)Google Scholar
  42. Pavlinov IJ, Rossolimo OL (1998) Systematics of the mammals of Soviet Union. Additions. Proc Zool Mus Moscow State Univ 38:1–190 (in Russian)Google Scholar
  43. Polly PD (2007) Phylogeographic differentiation in Sorex araneus: morphology in relation to geography and karyotype. Russian J Theriol 6:73–84Google Scholar
  44. Rovatsos MT, Mitsainas GP, Paspali G, Oruci S, Giagia-Athanasopoulou EB (2011) Geographical distribution and chromosomal study of the underground vole Microtus thomasi in Albania and Montenegro. Mamm Biol 76:22–27. doi: 10.1016/j.mambio.2010.01.003 Google Scholar
  45. Sánchez A, Burgos M, Jiménéz R, Diaz de la Guardia R (1990) Variable conservation of nucleolus organizer regions during karyotypic evolution in Microtidae. Genome 33:119–122PubMedCrossRefGoogle Scholar
  46. Shehab A, Daoud A, Kock D, Amr Z (2004) Small mammals recovered from owl pellets from Syria (Mammalia: Chiroptera, Rodentia). Zool Middle East 33:27–42CrossRefGoogle Scholar
  47. Seabright M (1971) A rapid banding technique for human chromosomes. Lancet 7731:971–972CrossRefGoogle Scholar
  48. Şekeroğlu A, Kefelioğlu H, Şekeroğlu V (2011) Cytogenetic characteristics of Microtus dogramacii (Mammalia: Rodentia) around Amasya, Turkey. Turk J Zool 35:593–598. doi: 10.3906/zoo-0910-4 Google Scholar
  49. Shenbrot GI, Krasnov BR (2005) An atlas of geographic distribution of the Arvicolinae rodents of the world (Rodentia, Muridae: Arvicolinae). Pensoft, SofiaGoogle Scholar
  50. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  51. Wójcik JM, Bogdanowicz W, Pucek Z, Wójcik AM, Zalewska H (2000) Morphometric variation of the common shrew Sorex araneus in Poland, in relation to karyotype. Acta Theriol 45(Suppl 1):161–172Google Scholar
  52. Yavuz M, Öz M, Albayrak I (2009) Two new locality records extend the distribution of Microtus anatolicus Kryštufek and Kefelioğlu, 2002 (Mammalia: Rodentia) into Antalya Province in Turkey. North-West J Zool 5:364–369Google Scholar
  53. Yiğit N, Çolak E (2002) On the distribution and taxonomic status of Microtus guentheri (Danford and Alston, 1880) and Microtus lydius Blackler, 1916 (Mammalia: Rodentia) in Turkey. Turk J Zool 26:197–204Google Scholar
  54. Yiğit N, Gharkheloo MM, Çolak E, Özkurt Ş, Bulut Ş, Kankiliç T, Çolak R (2006) The karyotypes of some rodent species (Mammalia: Rodentia) from eastern Turkey and northern Iran with a new record, Microtus schidlovskii Argyropulo, 1933, from eastern Turkey. Turk J Zool 30:459–464Google Scholar
  55. Yiğit N, Markov G, Colak E, Kocheva M, Saygili F, Yuce D, Cam P (2012) Phenotypic features of the “guentheri” group vole (Mammalia: Rodentia) in Turkey and southeast Bulgaria: evidence for its taxonomic detachment. Acta Zool Bulg 64:23–32Google Scholar
  56. Zima J, Král B (1984) Karyotypes of European mammals II. Acta Sc Nat Brno 18(8):1–62Google Scholar
  57. Zima J, Lukš D, Macholán M (1990) Unusual karyotypes in Apodemus cf. flavicollis and Microtus agrestis (Mammalia, Rodentia). Acta Soc Zool Bohemoslovacae 54:146–149Google Scholar
  58. Zykov AE, Zagorodnyuk IV (1988) On the systematic status of the social vole (Mammalia, Rodentia) from the Kopetdag Mts. Vestnik Zool 1988(5):46–52 (in Russian)Google Scholar
  59. Živković S, Petrov B (1975) The karyotype of Microtus guentheri Danford et Alston, 1880 from Yugoslavia and the taxonomic status of that vole (Mammalia: Rodentia). Arh Biol Nauke (Beograd) 27(3–4):15–16Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2012

Authors and Affiliations

  • Jan Zima
    • 1
  • Atilla Arslan
    • 2
  • Petr Benda
    • 3
  • Miloš Macholán
    • 4
  • Boris Kryštufek
    • 5
  1. 1.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.Department of Biology, Faculty of ScienceSelçuk UniversityKonyaTurkey
  3. 3.Department of ZoologyNational MuseumPraha 1Czech Republic
  4. 4.Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  5. 5.Slovene National Museum of Natural HistoryLjubljanaSlovenia

Personalised recommendations