Acta Theriologica

, Volume 57, Issue 4, pp 333–341 | Cite as

Diet selection of the southern vizcacha (Lagidium viscacia): a rock specialist in north western Patagonian steppe, Argentina

  • Gladys I. GalendeEmail author
  • Estela Raffaele
Original Paper


The southern vizcacha (Lagidium viscacia) is a rock specialist that inhabits small colonies in isolated rocky outcrops of northwestern Patagonia. This study analyzes its diet selection in relation to food availability, establishes the degree of dietary specialization, and discusses the potential competition with exotic herbivores. Diet composition and food availability were determined in summer and winter in eight rocky outcrops by microhistological analysis of fecal pellets, and food availability was estimated by the Braun Blanquet cover abundance scale. Vegetation cover differences were detected by using a random analysis of variance (ANOVA) factorial block design, and dietary preferences were determined by the confidence interval of Bonferroni. The southern vizcacha showed a specialized feeding behavior despite the consumption of a wide variety of items. Their diet was concentrated on a few types of food, mainly grasses, and the trophic niche was narrow and without seasonal variations. In winter, when food was scarce and of lower quality than summer, diet was dominated by Stipa speciosa, suggesting a selection according to the selective quality hypothesis. Our results (narrow trophic niche, restricted activity near rocky outcrops, and a diet with high proportions of low-quality grasses) showed that the vizcacha is an obligatory dietary specialist, and these characteristics made it highly vulnerable to changes in food availability. In this scenario, overgrazing caused by alien species with similar diets, as the European hare and livestock, could negatively affect their colonies.


Trophic niche Food quality hypothesis Rocky outcrops Selectivity 



We thank Claudia Campos and Susan Walker for their commentaries and improvements to the manuscript. We also thank the student field assistants and the financial support provided by the CONICET (PIP 5066) and the National University of Comahue (grant UNC-B126). Thank you to Springer for the licence to publish part of the data from Galende and Raffaele (2008).

ER is a member of the National Research Council (CONICET).


  1. Adler PB, Raff DA, Lauenroth WK (2001) The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 128:465–469CrossRefGoogle Scholar
  2. Baldi R, Pelliza Sbriller A, Albon SD (2004) Hight potencial for competition between guanacos and sheep in Patagonia. J Wildl Manage 68:924–938CrossRefGoogle Scholar
  3. Baumgartner LA, Martin A (1939) Plant histology as an aid in squirrel food habit studies. J Wildl Manage 3:266–268CrossRefGoogle Scholar
  4. Belovsky GE (1986) Optimal foraging and community structure: implications for a guild generalist grassland herbivores. Oecologia 70:35–52CrossRefGoogle Scholar
  5. Bergeron JM, Jodoin L (1987) Defining “high quality” food resources of herbivores: the case for meadow voles (Microtus pennsylvanicus). Oecologia 71:510–517CrossRefGoogle Scholar
  6. Bertiller M, Bisigato A (1998) Vegetation dynamics under grazing disturbance. The state and transition model for the Patagonian steppes. Ecol Austr 8:191–201Google Scholar
  7. Bonino NA (1995) Introduced mammals into Patagonia, Southern Argentina: consequences, problems and management strategies. Paper presented at the integrating people and wildlife for a sustainable future, First international wildlife management congressGoogle Scholar
  8. Bozinovic F (1995) Nutritional energetics and digestive responses of an herbivorous rodent (Octodon degus) to different levels of dietary fiber. J Mamm 76:627–637CrossRefGoogle Scholar
  9. Bozinovic F, Veloso C, Rosenmann M (1988) Cambios del tracto digestivo de Abroitrix andinus (Cricetidae) efecto de la calidad de dieta y requerimientos de energia. Rev Chil Hist Nat 61:245–251Google Scholar
  10. Branch L, Sosa R (1994) Foraging behavior of the plains vizcacha Lagostomus maximus (Rodentia: Chinchillidae), in semi-arid srub of central Argentina. V Sil Neo 3:96–99Google Scholar
  11. Branch L, Villareal D, Pelliza Sbriller A, Sosa R (1994) Diet selection of the plains vizcacha (Lagostomus maximus), family (Chinchillidae) in relation to resource abundance in semi-arid scrub. Can J Zool 72:2210–2216CrossRefGoogle Scholar
  12. Branch L, Villareal D, Fierro JL, Portier KM (1996) Effects of local extinction of the plains vizcacha (Lagostomus maximus) on vegetation patterns in semi-arid scrub. Oecologia 106:389–399CrossRefGoogle Scholar
  13. Brown JS (1988) Patch use as an indicator of habitat preference, predation risk, and competition. Behav Ecol Sociobiol 22:37–47CrossRefGoogle Scholar
  14. Bustos C (1996) Climodiagramas de localidades seleccionadas de la Provincia de Río Negro. Comunicación técnica, vol 16. Área Recursos Naturales Agrometeorología INTA, BarilocheGoogle Scholar
  15. Byers CR, Steinhorst R, Krausman PR (1984) Clarification of a technique for analysis of utilizacion-availability data. J Wildl Manage 48:1050–1053CrossRefGoogle Scholar
  16. Caughley G, Sinclair A (1994) Wildlife ecology and management. Blackwell Scientific, BostonGoogle Scholar
  17. Cavagnaro F, Golluscio R, Wassner D, Ravetta D (2003) Caracterización química de los arbustos patagónicos con diferente preferencia por parte de los herbívoros. Ecol Aust 13:215–222Google Scholar
  18. Cortés A, Rau JR, Miranda E, Jimémez JE (2002) Hábitos alimentarios de Lagidium viscacia y Abrocoma cinerea: dos roedores sintópicos en ambientes altoandino del norte de Chile. Rev Chil Hist Nat 75:583–593CrossRefGoogle Scholar
  19. Cossíos D (2004) La liebre europea, Lepus europaeus (Mammalia, Leporidae), especie invasora en el sur del Perú. Rev Per Biol 11:209–212Google Scholar
  20. Covich A (1976) Analysing shapes of foraging areas: some ecological and economics theories. Ann Rev Ecol 7:235–257CrossRefGoogle Scholar
  21. Crawley M (1983) Herbivory. The dynamics of animal plants interactions. Blackwell Scientific, OxfordGoogle Scholar
  22. Crespo J (1963) Dispersión del Chinchillón Lagidium viscacia (Molina) en el Noroeste de la Patagonia y descripción de una nueva especie (Mammalia; Rodentia). Neotropica 9:61–63Google Scholar
  23. Dearing DM, Mangione AM, Karasov WH (2000) Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405CrossRefGoogle Scholar
  24. Dement MW, Van Soest P (1985) A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672CrossRefGoogle Scholar
  25. Díaz GB, Ojeda RA (2000) Libro Rojo de Mamíferos Amenazados de la Argentina. Sociedad Argentina para el estudio de los Mamíferos SAREM, MendozaGoogle Scholar
  26. Ellis JE, Wiens JA, Rodell CF, Anway JC (1976) A conceptual model of diet selection as an ecosystem process. J Theor Biol 60:93–108PubMedCrossRefGoogle Scholar
  27. Farji-Brener A, Ghermandi L (2004) Seedling recruitment in a semi-arid Patagonian steppe: facilitative effects of refuse dumps of leaf-cutting ants. J Veg Sci 15:823–830Google Scholar
  28. Feinsinger P, Spears E, Poole R (1981) A simple mesure of niche breadth. Ecol Lett 62:27–33Google Scholar
  29. Galende GI (2010) Patrones de uso de recursos alimentarios y espaciales del chinchillón (Lagidium viscacia) y la liebre europea (Lepus europaeus) en roquedales del NO Patagónico. Universidad Nacional de La Plata, [PhD dissertation] La PlataGoogle Scholar
  30. Galende GI, Grigera D (1998) Relaciones alimentarias de Lagidium viscacia (Rodentia, Chinchillidae) con herbívoros introducidos en el Parque Nacional Nahuel Huapi, Argentina. Iheringia, Sér Zool 84:3–10Google Scholar
  31. Galende GI, Raffaele E (2008) Space use of a non-native species, the european hare (Lepus europaeus), in habitats of the southern vizcacha (Lagidium viscacia) in Nothwestern Patagonia, Argentina. Eur J Wildl Res 54:299–304CrossRefGoogle Scholar
  32. Galende GI, Trejo A (2003) Depredación del águila mora (Geranoaetus melanoleucus) y el búho (Bubo magellanicus) sobre el chinchillón (Lagidium viscacia) en el noroeste de la Patagonia. Mastozool Neotrop 10:143–147Google Scholar
  33. Galende GI, Grigera D, von Thüngen J (1998) Composición de la dieta del chinchillón (Lagidium viscacia, Chinchillidae) en el noroeste de la Patagonia. Mastozool Neotrop 5:123–128Google Scholar
  34. Grigera D, Rapoport E (1983) Status and distribution of the European hare in South America. J Mamm 64:163–166CrossRefGoogle Scholar
  35. Hanley TA (1982) The nutritional basis for food selection by ungulates. J Range Manage 35:148–150Google Scholar
  36. Hoeck HN (1975) Differential feeding behaviour of the sympatric hyrax Procavia johnstoni and Heterohyrax brucei. Oecologia 22:15–47CrossRefGoogle Scholar
  37. Holechek JL, Gross B (1982) Evaluation of different calculation procedures for microhistological analysis. J Range Manage 35:721–730CrossRefGoogle Scholar
  38. Holmes WG (1991) Predator risk affects foraging behavior of pikas: observational and experimental evidence. Anim Behav 42:111–119CrossRefGoogle Scholar
  39. Huntly N (1987) Influence of refuging consumers (Pikas: Ochotona princeps) on subalpine meadow vegetation. Ecology 68:274–283CrossRefGoogle Scholar
  40. Huntly N, Smith A, Ivins B (1986) Foraging behaviour of the pika (Ochotona princeps), with comparations of grazing versus haying. J Mamm 67:139–148CrossRefGoogle Scholar
  41. Jackson JE (1985) Ingestión voluntaria y digestibilidad en la vizcacha (Lagostomus maximus). Rev Arg Prod Anim 5:113–119Google Scholar
  42. Kitzberger T, Raffaele E, Heinemann K, Mazzarino MJ (2005) Multiple effects of fire severity on tree regeneration in northern Patagonian subalpine forests: an experimental approach. J Veg Sci 16:5–12CrossRefGoogle Scholar
  43. Kotler BP, Brown JS (1999) Mechanisms of coexistence of optimal foragers as determinants of local abundances and distributions of deserts granivores. J Mamm 80:361–374CrossRefGoogle Scholar
  44. Kotler BP, Brown JS, Knight MH (1999) Habitat and patch use by hyraxes: there’s no place like home? Ecol Lett 2:82–88CrossRefGoogle Scholar
  45. Krebs C (1989) Ecological methodology. Harper & Row, New YorkGoogle Scholar
  46. Latour M, Pelliza de Sbriller A (1981) Clave para la determinación de la dieta de herbívoros en el NO de Patagonia. Rev Inv Agr INTA XV:109–157Google Scholar
  47. León RJ, Bran D, Collantes M, Paruelo JM, Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecol Aust 8:125–144Google Scholar
  48. Mateucci S, Colma A (1982) Metodología para el estudio de la vegetación. Monografía N 22. OEA, Washington DCGoogle Scholar
  49. Matheson JD, Larson DW (1998) Influence of cliffs on bird community Diversity. Can J Zool 76:278–287CrossRefGoogle Scholar
  50. Merino ML, Carpinetti BN, Abba AM (2009) Invasive mammals in the national parks system of Argentina. Nat Areas J 29:42–49CrossRefGoogle Scholar
  51. Milton K (1979) Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. Am Nat 114:362–378CrossRefGoogle Scholar
  52. Muñoz E, Garay A (1985) Régimen de precipitaciones de la Provincia de Río Negro. Comunicacion técnica. Instituto de Tecnología Agropecuaria, BarilocheGoogle Scholar
  53. Naya D, Bozinovic F, Karasov W (2008) Latitudinal trends in digestive flexibility: testing the climatic variability hypothesis with data on the intestinal length of Rodents. Am Nat 172:122–134CrossRefGoogle Scholar
  54. Neu C, Byers CR, Peek J (1974) A technique for analysis of utilization availability data. J Wildl Manage 38:541–545CrossRefGoogle Scholar
  55. Novaro AJ, Capurro AF, Travaini A, Funes MC, Ravinovich JE (1992) Pellet-count sampling based on spatial distribution: a case study of European hare in Patagonia. Ecol Aust 2:11–18Google Scholar
  56. Nutt KJ (2007) Socioecology of rock-dwelling rodents. In: Wolf JO, Sherman PW (eds) Rodent societies: an ecological and evolutionary perspective. Chicago University Press, Chicago, pp 35–48Google Scholar
  57. Paruelo J, Bertiller MB, Schlichter TM, Coronato F (1993) Secuencias de deterioro en distintos ambientes Patagónicos. Su caracterización mediante el modelo de Estados y Transiciones. Informe Técnico INTA-GTZ. Intituto de Tecnología Agropecuaria INTA, BarilocheGoogle Scholar
  58. Pearson O (1995) Annotated keys for identifying small mammals living in or near Nahuel Huapi National Park or Lanin National Park, Southern Argentina. Museum of Vertebrate Zoology. University of California, Berkeley, CA, USAGoogle Scholar
  59. Pelliza A, Willems P, Nakamatsu V, Manero A (eds) (1997) Atlas dietario de Herbívoros patagónicos. PRODESAR-INTA-GTZ. Bariloche, ArgentinaGoogle Scholar
  60. Penry DL (1993) Digestive constrains on diet selection. In: Hughes RN (ed) Diet selection. An interdisciplinary approach to foraging behaviour. Blackwell Scientific, Oxford, UK, pp 32–55Google Scholar
  61. Puig S, Videla F, Cona MI (1997) Diet and abundance of the guanaco (Lama guanicoe Müller 1776) in four habitats of northern Patagonia, Argentina. J Arid Environ 47:291–308CrossRefGoogle Scholar
  62. Puig S, Videla E, Cona M, Monge S, Roig V (1998) Diet of the mountain vizcacha (Lagidium viscacia Molina, 1782) and food availability in the northern Patagonia, Argentina. Mamm Biol 63:228–238Google Scholar
  63. Puig S, Videla F, Cona MI, Monge SA (2007) Diet of the brown hare (Lepus europaeus) and food availability in northern Patagonia (Mendoza, Argentina). Mamm Biol 72:240–250CrossRefGoogle Scholar
  64. Puig S, M C, Videla F, Mendez E (2009) Diet of the mara (Dolichotis patagonum), food availability and effects of an extended drought in Northern Patagonia (Mendoza, Argentina). doi:101016/jmambio200912003Google Scholar
  65. Quirici V, Castro R, Ortiz-Tolhuysen L, Chesh A, Burger J, Miranda E, Cortés S, Hayes L, Ebensperger L (2010) Seasonal variation in the range areas of the diurnal rodent Octodon degus. J Mamm 91:458–466CrossRefGoogle Scholar
  66. Reus Ruiz ML (2006) Caracterización del habitat y composición de la dieta de Lagidium viscacia (Chinchillidae), en la Puna-San Juan-Argentina. Lic. thesis, Universidad Nacional de San Juan, San Juan, ArgentinaGoogle Scholar
  67. Rodriguez MD, Dacar M (2008) Composisción de la dieta de la mara (Dolichotis patagonum) en el sudeste del monte pampeano (La Pampa, Argentina). Mast Neotr 15:215–220Google Scholar
  68. Rosi M, Cona M, Videla F, Puig S, Monge S, Roig V (2003) Diet selection by the fossorial Rodent Ctenomys mendocinus inhabiting an environment with low food availability. Stud Neotropical Fauna Environ 38:159–166CrossRefGoogle Scholar
  69. Sassi P, Borghi C, Bozinovic F (2007) Spatial and seasonal plasticity in digestive morphology of cavies (Microcavia australis) inhabiting habitats with different plant qualities. J Mamm 88:165–172CrossRefGoogle Scholar
  70. Senft RL, Coughenour MB, Bailey DW, Ritttenhouse LR, Sala OE, Swift DM (1987) Large herbivore foraging and ecological hierarchies. BioScience 37:789–799CrossRefGoogle Scholar
  71. Shipley L, Forbey J, Moore B (2009) Revising the dietary niche: when is a mammalian herbivore a specialist? Integr Comp Biol 49:274–290PubMedCrossRefGoogle Scholar
  72. Sih A (1993) Effects of ecological interactions on forager diets: competition, predation risk, parasitism and prey behaviour. In: Hughes RN (ed) Diet selection. An interdisciplinary approach to foraging behaviour. Blackwell Scientific, Oxford (UK), pp 182–211Google Scholar
  73. Sombra M, Mangione A (2005) Obsessed with grasses? The case of mara Dolichotis patagonun (Caviidae: Rodentia). Rev Chil Hist Nat 78:401–408CrossRefGoogle Scholar
  74. Somlo R, Durañona C, Ortiz R (1985) Valor nutritivo de las principales especies forrajeras patagónicas. Rev Arg Prod Anim 5:589–605Google Scholar
  75. Somlo R, Bonvissuto G, Sbriller A, Bonino N, Motriz E (1994) La influencia de la condición del pastizal sobre la dieta estacional de los herbívoros y el pastoreo múltiple, en sierras y mesetas occidentales de Patagonia. Rev Erg Prod Anim 14:187–207Google Scholar
  76. Sparks DR, Malechek JC (1968) Estimating percentage of dry weits in diets using a microscopic technique. J Range Manage 21:264–265CrossRefGoogle Scholar
  77. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  78. Stuth JW (1991) Foraging behaviour. An ecological perspective. In: Stuth JM (ed) Grazing management. Timber Press, Portland, OR, USA, pp 65–83Google Scholar
  79. Vázquez DP (2002) Multiple effects of introduced mammalian herbivores in a temperate forest. Biol Invasions 4:175–191CrossRefGoogle Scholar
  80. Veloso C, Bozinovic F (1993) Dietary and digestive constraints on basal energy metabolism in a small herbivorous rodent. Ecol Lett 74:2003–2010Google Scholar
  81. Walker SR (2001) Effects of landscape structure on the distribution of mountain vizcachas (Lagidium viscacia) in the Patagonian Steppe. PhD dissertation, University of Florida, Gainesville, FL, USAGoogle Scholar
  82. Walker SR, Ackerman G, Schachter-Broide J, Pancotto V, Novaro AJ (2000a) Habitat use by mountain vizcachas (Lagidium viscacia Molina, 1782) in the Patagonia steppe. Mamm Biol 65:293–300Google Scholar
  83. Walker SR, Pancotto V, Schachter-Broide J, Ackerman G, Novaro AJ (2000b) Evaluation of a fecal-pellet index of abundance for mountain vizcachas (Lagidium viscacia). Mastozool Neotr 7:89–94Google Scholar
  84. Weckerly FW, Kenedy ML (1992) Examining hypotheses about feeding strategies of white–tailed deer. Can J Zool 70:432–439CrossRefGoogle Scholar
  85. Weir BJ (1971) Some notes on reproduction in the Patagonia Mountain viscachas Lagidium boxi (Mammalia; Rodentia). J Zool Lond 164:463–467CrossRefGoogle Scholar
  86. Willig M, Mares T (1991) Food selection of a tropical Mammalian folivore in relation to leaf-nutrient content. J Mamm 72:314–321CrossRefGoogle Scholar
  87. Zar JH (1999) Biostatistical analysis, 6th edn. Prentice-Hall, Upper Saddle River, NJ, USAGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2012

Authors and Affiliations

  1. 1.Department of ZoologyBariloche Regional University Center, National University of ComahueBarilocheArgentina
  2. 2.Laboratory Ecotono, Research Institute for Biodiversity and Environment(INIBIOMA) National University of Comahue–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)BarilocheArgentina

Personalised recommendations