Acta Theriologica

, Volume 56, Issue 4, pp 305–314 | Cite as

The impact of founder events and introductions on genetic variation in the muskox Ovibos moschatus in Sweden

  • Carl-Gustaf Thulin
  • Linda Englund
  • Göran Ericsson
  • Göran Spong
Original Paper


The muskox Ovibos moschatus (Zimmerman 1780) is a specialised arctic mammal with a highly fragmented circumpolar distribution, with native populations in Canada and east Greenland and introduced populations in west Greenland, Alaska, Siberia and Eurasia. In 1971, five O. moschatus individuals from an introduced population in Norway migrated to Sweden. After a peak population of 36 individuals in the mid-1980s, the Swedish population now numbers seven individuals, making it vulnerable to both demographic and genetic stochasticity (i.e. inbreeding). Here, we analyse genetic variation among native and introduced populations of O. moschatus to evaluate the genetic effect of sequential founder events in this species. Our results show that genetic variation among native and introduced O. moschatus populations do not conform entirely to the expectations from sequential founder events, most likely because of random processes associated with introduction. In the Swedish population, a calf resulting from the mating of a wild cow and a captive Greenlandic bull contributes significantly to the current genetic variation. Thus, even a single outbreeding event may, at least momentarily, increase the genetic variation and potentially prevent inbreeding depression. Our results should aid the long-term preservation of O. moschatus in Sweden and Europe.


Supplemental release Conservation Restoration Microsatellites Bottleneck Sequential 



We thank Kris Hundertmark and two anonymous referees for suggestions that improved the manuscript. We are also grateful to Helena Königsson for technical support in the lab and the following persons for samples: Daniel Ottosson, Lars Rehnfeldt, Stefan Mörtberg, Ronny Stålfjäll, Olle Larsson, Bengt Röken, Anna Martinsson, Mats Höggren, Staffan Åkeby, Bengt Holst, Carsten Grøndahl, Helle Flaga, Hans-Ove Larsson, Peter Mortensen, Torsten Mörner, Jessica Åsbrink, Göran Frisk, Arne Söderberg, Peter J. Van Coeverden De Groot, Patricia Reynolds, Mads Forchhammer, Niels Martin Schmidt, Peter Aastrup, Katrine Raundrup, Gunnar Mylius Pedersen, Jon Arnemo, Bjørn Rangbru, Bjørnar Ytrehus, Johan Schulze, Marthe Opland and Nina Brekke Tvedt. We thank the Faculty of Forest Sciences, Swedish Agricultural University in Umeå, the County Administration Board of Jämtland and the Muskox project in Härjedalen for financial support. CGT acknowledge the Swedish Association of Hunting and Wildlife Management for research grant (Project Number: 5880/2007).

Ethical standards

Sample collections comply with the current law in Sweden.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alendal E (1974) The history of muskoxen in Sweden. Fauna Flora 2:41–46 [In Swedish]Google Scholar
  2. Andersson A-C, Andersson S, Lönn M (2007) Genetic variation in wild plants and animals in Sweden. Naturvårdsverket, Rapport 5712:1–179 (in Swedish)Google Scholar
  3. Barr W (1991) Back from the brink: the road to muskox conservation in the Northwest Territories. Arctic Institute of North America, Komatik series 3, University of Calgary, pp 1–127Google Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  5. Bennike O, Andreasen C (2005) New dates of musk-ox (Ovibos moschatus) remains from northwest Greenland. Polar Rec 41:125–129CrossRefGoogle Scholar
  6. Broders HG, Mahoney SP, Montevecchi WA, Davidson WS (1999) Population genetic structure and the effect of founder events on the genetic variability of moose, Alces alces, in Canada. Mol Ecol 8:1309–1315CrossRefGoogle Scholar
  7. Campos PF, Willerslev E, Sherb A, Orlando L, Axelsson E, Tikhonov A, Aaris-Sørensen K, Greenwood AD, Kahlke R-D, Kosintsev P, Krakhmalnaya T, Kuznetsova T, Lemey P, MacPhee R, Norris CA, Shepherd K, Suchard MA, Zazula GD, Shapiro B, Gilbert MTP (2010) Ancient DNA analyses exclude humans as the driving force behind late Pleistocene musk ox (Ovibos moschatus) population dynamics. P Natl Acad Sci USA 107:5675–5680CrossRefGoogle Scholar
  8. Cassinello J (2005) Inbreeding depression on reproductiove performance and survival in captive gazelles of great conservation value. Biol Cons 122:453–464CrossRefGoogle Scholar
  9. Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IPF (2002) Genetic consequences of sequential founder events by an island-colonizing bird. P Natl Acad Sci USA 99:8127–8132CrossRefGoogle Scholar
  10. Coltman DW, Bowen WD, Wright JM (1998) Birth weight and neonatal survival of harbour seal pups are positively correlated with genetic variation measured by microsatellites. P Roy Soc Lond B BIO 265:803–809CrossRefGoogle Scholar
  11. Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53:1259–1267PubMedGoogle Scholar
  12. DeYoung RW, Honeycutt RL (2005) The molecular toolbox: genetic techniques in wildlife ecology and management. J Wildl Manage 69:1362–1384CrossRefGoogle Scholar
  13. Ericson M (2002) [Muskoxen. A local management plan to improve the possibility for muskoxens to survive in the Swedish mountain range]. Projekt Myskoxe, Framtidsfjäll 2000 (in Swedish)Google Scholar
  14. Fleischman CL (1986) Genetic variation in muskoxen (Ovibos moschatus). M.Sc. thesis, University of Alaska, Fairbanks, AK, USAGoogle Scholar
  15. Forchhammer M, Boertmann D (1993) The muskoxen Ovibos moschatus in north and northeast Greenland: population trends and the influence of abiotic parameters on population dynamics. Ecography 16:299–308CrossRefGoogle Scholar
  16. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Groves P (1997) Intraspecific variation in mitochondrial DNA of muskoxen, based on control-region sequences. Can J Zoolog 75:568–575CrossRefGoogle Scholar
  18. Gunn A, Forchhammer M (2008) Ovibos moschatus. The IUCN red list of threatened species. Available at Accessed 6 October 2008
  19. Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Conserv Biol 9:996–1007CrossRefGoogle Scholar
  20. Hedrick PW, Kalinowski ST (2000) Inbreeeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162CrossRefGoogle Scholar
  21. Holm LE, Forchhammer MC, Boomsma JJ (1999) Low genetic variation in muskoxen (Ovibos moschatus) from western Greenland using microsatellites. Mol Ecol 8:675–679CrossRefGoogle Scholar
  22. Hundertmark KJ (2009) Reduced genetic diversity in two introduced and isolated moose populations in Alaska. Alces 45:137–142Google Scholar
  23. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147CrossRefGoogle Scholar
  24. Jingfors KT, Klein DR (1982) Productivity in recently established muskox populations in Alaska. J Wildl Manage 46:1092–1096CrossRefGoogle Scholar
  25. Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  26. Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mammal 78:320–335CrossRefGoogle Scholar
  27. Laikre L, Ryman N (1991) Inbreeding depression in a captive wolf (Canis lupus) population. Conserv Biol 5:33–40CrossRefGoogle Scholar
  28. Laikre L, Andrén R, Larsson H, Ryman N (1996) Inbreeding depression in brown bear Ursus arctos. Biol Conserv 76:69–72CrossRefGoogle Scholar
  29. Laikre L, Ryman N, Lundh NG (1997) Estimated inbreeding in a small, wild muskox Ovibos moschatus population and its possible effects on population reproduction. Biol Conserv 79:197–204CrossRefGoogle Scholar
  30. Le Corre V, Kremer A (1998) Cumulative effects of founding events during colonisation on genetic diversity and differentiation in an island and stepping-stone model. J Evol Biol 11:495–512CrossRefGoogle Scholar
  31. Le Hénaff D, Crête M (1989) Introduction of muskoxen in northern Quebec: the demographic explosion of a colonizing herbivore. Can J Zoolog 67:1102–1105CrossRefGoogle Scholar
  32. Lent PC (1998) Alaska’s indigenous muskoxen: a history. Rangifer 18:133–144CrossRefGoogle Scholar
  33. Lent PC (1999) Muskoxen and their hunters: a history. Animal Natural History 5, University of Oklahoma Press, Norman, OK, USAGoogle Scholar
  34. Lundh NG (1996) The muskoxen in Sweden. Naturvårdsverket Förlag, Rapport 4545:1–142 [In Swedish]Google Scholar
  35. Mallinson JCC (1995) Conservation breeding programmes: an important ingredient for species survival. Biodivers Conserv 4:617–635CrossRefGoogle Scholar
  36. MacPhee RDE, Tikhonov AN, Mol D, Greenwood AD (2005) Late quaternary loss of genetic diversity in muskox (Ovibos). BMC Evol Biol 5:49CrossRefGoogle Scholar
  37. McDonald HG, Davis RA (1989) Fossil muskoxen of Ohio. Can J Zoolog 67:1159–1166CrossRefGoogle Scholar
  38. Mikko S, Røed K, Schmutz S, Andersson L (1999) Monomorphism and polymorphism at Mhc DRB loci in domestic and wild ruminants. Immunol Rev 167:169–178CrossRefGoogle Scholar
  39. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215CrossRefGoogle Scholar
  40. Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518CrossRefGoogle Scholar
  41. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  42. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  43. Nyqvist J (2004) Ecological possibilities for musk oxen (Ovibos moschatus) in the Swedish mountain range. M.Sc. thesis, Swedish University of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  44. Olesen CR (1993) Rapid population increase in an introduced muskox population, West Greenland. Rangifer 13:27–32CrossRefGoogle Scholar
  45. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: simulation-based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefGoogle Scholar
  46. Park SDE (2001) Trypanotolerance in West African Cattle and the population genetic effects of selection. Ph.D. thesis, University of Dublin, Dublin, IrelandGoogle Scholar
  47. Pedersen CB, Aastrup P (2000) Muskoxen in Angujaartorfiup Nunaa, west Greenland: monitoring, spatial distribution, population growth, and sustainable harvest. Arctic 53:18–26CrossRefGoogle Scholar
  48. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539CrossRefGoogle Scholar
  49. Pruett CL, Winker K (2005) Northwestern song sparrow populations show genetic effects of sequential colonization. Mol Ecol 14:1421–1434CrossRefGoogle Scholar
  50. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv Biol 2:185–193CrossRefGoogle Scholar
  51. Rangbru B, Andreassen S (2006) [Management plan for the muskoxen in Dovre Mountains]. Fylkesmannen i Sør-Trøndelag, Rapport Nr 1. Trondheim: 1–33 [In Norweigan]Google Scholar
  52. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. P Natl Acad Sci USA 94:9197–9201CrossRefGoogle Scholar
  53. Raymond M, Rousset F (1995) GENEPOP (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  54. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  55. Roldan ERS, Cassinello J, Abaigar T, Gomendio M (1998) Inbreeding, fluctuating asymmetry, and ejaculate quality in an endangered ungulate. P Roy Soc Lond B BIO 265:243–248CrossRefGoogle Scholar
  56. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  57. Slate J, Kruuk LEB, Marshall TC, Pemberton JM, Clutton-Brock TH (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). P Roy Soc Lond B BIO 267:1657–1662CrossRefGoogle Scholar
  58. Spencer DL, Lensink CJ (1970) The muskox of Nunivak Island, Alaska. J Wildl Manage 34:1–15CrossRefGoogle Scholar
  59. Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. P Natl Acad Sci USA 101:15261–15264CrossRefGoogle Scholar
  60. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399PubMedPubMedCentralGoogle Scholar
  61. Thulin C-G, Simberloff D, Barun A, McCracken G, Pascal M, Islam A (2006) Genetic divergence in the small Indian mongoose (Herpestes auropunctatus), a widely distributed invasive species. Mol Ecol 15:3947–3956CrossRefGoogle Scholar
  62. Uspenski SM (1984) Muskoxen in the USSR: some results of and perspectives on their introduction. Biological Paper, University of Alaska, Special Report Vol. 4, pp 12–14Google Scholar
  63. Van Coeverden De Groot PJ, Boag P (2004) Optimization of novel polymorphic microsatellites in muskox (Ovibos moschatus) leads to an increased estimate of muskox microsatellite diversity. Mol Ecol Notes 4:713–715CrossRefGoogle Scholar
  64. Vibe C (1967) Arctic animals in relation to climatic fluctuations. The Danish Zoogeographical Investigations in Greenland. C. A. Reitzels Forlag, Copenhagen, pp 1–127Google Scholar
  65. Vikøren T, Lillehaug A, Akerstedt J, Bretten T, Haugum M, Tryland M (2008) A severe outbreak of contagious ecthyma (orf) in a free-ranging musk ox (Ovibos moschatus) population in Norway. Vet Microbiol 127:10–20CrossRefGoogle Scholar
  66. Vucetich JA, Waite TA (2000) Is one migrant per generation sufficient for the genetic management of fluctuating populations? Anim Conserv 3:261–266CrossRefGoogle Scholar
  67. Weir BS, Cockerham CC (1984) Esimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  68. Westemeier L, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2011

Authors and Affiliations

  • Carl-Gustaf Thulin
    • 1
    • 2
    • 3
  • Linda Englund
    • 1
  • Göran Ericsson
    • 1
  • Göran Spong
    • 1
  1. 1.Wildlife, Fish and Environmental StudiesSwedish University of Agricultural SciencesUmeåSweden
  2. 2.Animal Nutrition and ManagementSwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Population Biology and Conservation Biology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations