Acta Theriologica

, Volume 56, Issue 3, pp 289–295 | Cite as

Social and life history correlates of litter size in captive colonies of precocial spiny mice (Acomys)

  • Daniel Frynta
  • Marcela Fraňková
  • Barbora Čížková
  • Hana Skarlandtová
  • Katarina Galeštoková
  • Klára Průšová
  • Petr Šmilauer
  • Radim Šumbera
Short Communication


Litter size is an important component of life history contributing to reproductive success in many animals. Among muroid rodents, spiny mice of the genus Acomys are exceptional because they produce large precocial offspring after a long gestation. We analyzed data on 1,809 litters from laboratory colonies of spiny mice from the cahirinus-dimidiatus group: Acomys cahirinus, Acomys cilicicus, Acomys sp. (Iran), and Acomys dimidiatus. Generalized mixed-effect models revealed that litter size increased with maternal body weight and/or number of immature females present in the family group. Thus, both maternal body reserves and presence of immature descendants demonstrating previous reproductive success enhance further reproduction in this social rodent.


Acomys Rodents Litter size Maternal investment Precocial life history 



We thank J. Sádlová, P. Kunzová, J. Flegr, M. Kaftan, and J. Borek for their help in collecting ancestral stocks of spiny mice. The project was supported by the Grant Agency of the Czech Academy of Sciences (project no. IAA 601410803), the Ministry of Education of the Czech Republic (MSMT 6007665801), and by the Faculty of Biological Sciences, University of South Bohemia (SGA2005/17). The personal costs of M.F. were covered from grant no. 20605H012 provided by The Grant Agency of the Czech Republic.


  1. Barome PO, Monnerot M, Gautun JC (1998) Intrageneric phylogeny of Acomys (Rodentia, Muridae) using mitochondrial gene cytochrome b. Mol Phylogenet Evol 9:560–566CrossRefGoogle Scholar
  2. Barome PO, Monnerot M, Gautun JC (2000) Phylogeny of the genus Acomys (Rodentia, Muridae) based on the cytochrome b mitochondrial gene: implications on taxonomy and phylogeography. Mammalia 64:423–438CrossRefGoogle Scholar
  3. Bennett PM, Owens IPF (2002) Evolutionary ecology of birds: life histories, mating systems and extinction. Oxford University Press, Oxford, pp 1–296Google Scholar
  4. Both C, Tinbergen JM, Van Noordwijk AJ (1998) Offspring fitness and individual optimization of clutch size. Proc R Soc Lond B Biol Sci 265:2303–2307CrossRefGoogle Scholar
  5. Brunjes PC (1990) The precocial mouse Acomys cahirinus. Psychobiology 18:339–350Google Scholar
  6. Bünger L, Lewis RM, Rothschild MF, Blasco A, Renne U, Simm G (2005) Relationships between quantitative and reproductive fitness traits in animals. Philos Trans R Soc Lond B Biol Sci 360:1489–1502CrossRefGoogle Scholar
  7. Burda H (1989) Relationship among rodent taxa as indicated by reproductive biology. Z Für Zoologische Systematik Und Evolutionsforschung 27:49–57CrossRefGoogle Scholar
  8. Clarke JR (1985) The reproductive biology of the bank vole (Clethrionomys glareolus) and the wood mouse (Apodemus sylvaticus). Symp Zool Soc Lond 55:33–59Google Scholar
  9. Dieterlen F (1961) Beitrage zur Biologie der Stachelmaus, Acomys cahirinus dimidiatus Cretzschmer. Z Säugetierkunde 26:1–13Google Scholar
  10. Dieterlen F (1962) Geburt und Geburtshilfe bei der Stachelmaus, Acomys cahirinus. Z Tierpsychol 19:191–222CrossRefGoogle Scholar
  11. Frynta D, Palupčíková K, Bellinvia E, Benda P, Skarlandtová H, Schwarzová L, Modrý D (2010) Phylogenetic relationships within the cahirinus-dimidiatus group of the genus Acomys (Rodentia: Muridae): new mitochondrial lineages from Sahara, Iran and the Arabian Peninsula. Zootaxa 2660:46–56Google Scholar
  12. Haim A, Alma A, Neuman A (2006) Body mass is a thermoregulatory adaptation of diurnal rodents to the desert environment. J Therm Biol 31:168–171CrossRefGoogle Scholar
  13. Havelka MA, Millar JS (2004) Maternal age drives seasonal variation in litter size of Peromyscus leucopus. J Mammal 85:940–947CrossRefGoogle Scholar
  14. Innes DGL, Millar JS (1990) Numbers of litters, litter size and survival in two species of microtines at two elevations. Holarctic Ecol 13:207–216Google Scholar
  15. Kai O, Sakemi K, Suzuki Y, Sonoda Y, Imai K (1995) Effects of age at first-pairing on the reproductive performance of Mongolian gerbils (Meriones unguiculatus). Exp Anim 44:307–313CrossRefGoogle Scholar
  16. Kam M, Khokhlova IS, Degen AA (2006) Partitioning of metabolizable energy intake in sucking altricial and precocial rodent pups. J Zool 269:502–505CrossRefGoogle Scholar
  17. Kasparian K, Geissler E, Trillmich F (2005) Optimal offspring size in a small mammal: an exception to the tradeoff invariant life-history rule. Oikos 111:271–278CrossRefGoogle Scholar
  18. Kratochvíl L, Frynta D (2006) Egg shape and size allometry in geckos (Squamata: Gekkota), lizards with contrasting eggshell structure: why lay spherical eggs? J Zool Syst Evol Res 44:217–222CrossRefGoogle Scholar
  19. Makin JW, Porter RH (1984) Paternal behavior in the spiny mouse (Acomys cahirinus). Behav Neural Biol 41:135–151CrossRefGoogle Scholar
  20. Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017–2031CrossRefGoogle Scholar
  21. Myers P, Master LL (1983) Reproduction by Peromyscus maniculatus: size and compromise. J Mammal 64:1–18CrossRefGoogle Scholar
  22. Nováková M, Palme R, Kutalová H, Janský L, Frynta D (2008) The effects of sex, age and commensal way of life on levels of fecal glucocorticoid metabolites in spiny mice (Acomys cahirinus). Physiol Behav 95:187–193CrossRefGoogle Scholar
  23. Nováková M, Vašáková B, Kutalová H, Galeštoková K, Průšová K, Šmilauer P, Šumbera R, Frynta D (2010) Secondary sex ratios do not support maternal manipulation: extensive data from laboratory colonies of spiny mice (Muridae: Acomys). Behav Ecol Sociobiol 64:371–379CrossRefGoogle Scholar
  24. Pinter-Wollman N, Dayan T, Eilam D, Kronfeld-Schor N (2006) Can aggression be the force driving temporal separation between competing common and golden spiny mice? J Mammal 87:48–53CrossRefGoogle Scholar
  25. Porter RH, Doane HM (1978) Studies of maternal behavior in spiny mice (Acomys cahirinus). Z Tierpsychol 47:225–235Google Scholar
  26. Porter RH, Cavallaro SA, Moore JD (1980) Developmental parameters of mother-offspring interactions in Acomys cahirinus. Z Tierpsychol 53:153–170CrossRefGoogle Scholar
  27. Porter RH, Matochik JA, Makin JW (1986) Discrimination between full-sibling spiny mice. (Acomys cahirinus) by olfactory signatures. Anim Behav 34:1182–1188CrossRefGoogle Scholar
  28. Scheibler E, Weinandy R, Gattermann R (2005) Social factors affecting litters in families of Mongolian gerbils, Meriones unguiculatus. Folia Zool 54:61–68Google Scholar
  29. Shafrir E (2000) Overnutrition in spiny mice (Acomys cahirinus): beta-cell expansion leading to rupture and overt diabetes on fat-rich diet and protective energy-wasting elevation in thyroid hormone on sucrose-rich diet. Diabetes Metab Res Rev 16:94–105CrossRefGoogle Scholar
  30. Shargal E, Rath-Wolfson L, Kronfeld N, Dayan T (1999) Ecological and histological aspects of tail loss in spiny mice (Rodentia: Muridae, Acomys) with a review of its occurrence in rodents. J Zool 249:187–193CrossRefGoogle Scholar
  31. Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553CrossRefGoogle Scholar
  32. Tinbergen JM, Both C (1999) Is clutch size individually optimized? Behav Ecol 10:504–509CrossRefGoogle Scholar
  33. Tinbergen JM, Sanz JJ (2004) Strong evidence for selection for larger brood size in a great tit population. Behav Ecol 15:525–533CrossRefGoogle Scholar
  34. Tkadlec E, Krejčová P (2001) Age-specific effect of parity on litter size in the common vole (Microtus arvalis). J Mammal 82:545–550CrossRefGoogle Scholar
  35. Tuomi J (1980) Mammalian reproductive strategies: a generalised relation of litter size to body size. Oecologia 45:39–44CrossRefGoogle Scholar
  36. Volobouev V, Auffray JC, Debat V, Denys C, Gautun JC, Tranier M (2007) Species delimitation in the Acomys cahirinus-dimidiatus complex (Rodentia, Muridae) inferred from chromosomal and morphological analyses. Biol J Linn Soc 91:203–214CrossRefGoogle Scholar
  37. Young DAB (1976) Breeding and fertility of the Egyptian spiny mouse, Acomys cahirinus: effect of different environments. Lab Anim 10:15–24CrossRefGoogle Scholar
  38. Zejda J (1966) Litter size in Clethrionomys glareolus Schreber, 1780. Zoologické Listy 15:193–206Google Scholar
  39. Žižková M, Frynta D (1996) Reproduction in Apodemus sylvaticus (Rodentia: Muridae) in captivity. Acta Soc Zool Bohem 60:83–93Google Scholar

Copyright information

© Mammal Research Institute, Polish Academy of Sciences, Białowieża, Poland 2011

Authors and Affiliations

  • Daniel Frynta
    • 1
    • 6
  • Marcela Fraňková
    • 1
    • 4
  • Barbora Čížková
    • 2
  • Hana Skarlandtová
    • 1
    • 5
  • Katarina Galeštoková
    • 1
  • Klára Průšová
    • 1
  • Petr Šmilauer
    • 3
  • Radim Šumbera
    • 2
  1. 1.Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Department of Ecosystem Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Crop Research InstitutePrague 6Czech Republic
  5. 5.Institute of Physiology, First Faculty of MedicineCharles UniversityPrague 2Czech Republic
  6. 6.Department of Zoology, Faculty of Natural ScienceCharles UniversityPrague 2Czech Republic

Personalised recommendations