Advertisement

Compositional Analysis of Heavy Petroleum Distillates by Comprehensive Two-dimensional Gas Chromatography, Field Ionization and High-resolution Mass Spectrometry

  • Kuangnan QianEmail author
  • Frank C. Wang
Research Article

Abstract

We report recent progresses of combining comprehensive two-dimensional gas chromatography (2DGC or GC × GC) separation, field ionization (FI), and time-of-flight mass spectrometry (TOF MS) for the detailed analysis of vacuum gas oil distillation (VGO) cuts. 2DGC separates petroleum molecules by the combination of boiling point and polarity. FI generates molecule ions-only mass spectra. TOF MS allows accurate mass analysis of hydrocarbon molecules. A new data analysis strategy is implemented for compositional analysis. First, all masses were separated into nominal mass classes. Since petroleum homologues have unique Kendrick mass defects (KMD), KMD plots were generated for easy recognition of homologues series within each nominal mass class. Finally, KMD windows were imposed for complete resolution of petroleum molecules. Using this approach, a total of 16 hydrocarbon types, 14 sulfur types, and their carbon number distributions were determined in the three VGO distillation cuts. Two series of geological biomarkers were also revealed by the analysis.

Keywords

Petroleum composition Field ionization Two-dimensional GC Time-of-flight MS Kendrick mass defect Petroleum biomarkers Accurate mass Vacuum gas oil Nominal mass class 

Notes

Acknowledgements

Authors greatly appreciate the assistance of Ms. Tara Reddington for the 2DGC and 2D-GC-TOF MS experiments.

Supplementary material

13361_2019_2349_MOESM1_ESM.docx (75 kb)
ESM 1 (DOCX 74 kb)

References

  1. 1.
    Quann, R.J., Jaffe, S.B.: Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures. Ind. Eng. Chem. Res. 31, 2483–2497 (1992)CrossRefGoogle Scholar
  2. 2.
    Peters, K.E., Walters, C.C., Moldowan, J.M.: The Biomarker Guide, 2nd edn. Cambridge University Press, Cambridge (2005)Google Scholar
  3. 3.
    Pollo, B.J., Alexandrino, G.L., Augusto, F., Hantao, L.W.: The impact of comprehensive two-dimensional gas chromatography on oil , gas analysis: recent advances and applications in petroleum industry. TrAC Trends Anal. Chem. 105, 202–217 (2018)CrossRefGoogle Scholar
  4. 4.
    Alam, M.S., Harrison, R.M.: Recent advances in the application of 2-dimensional gas chromatography with soft and hard ionisation time-of-flight mass spectrometry in environmental analysis. Chem. Sci. 7, 3968–3977 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Li, S., Cao, J., Hu, S., Zhang, D., Fan, R.: Analysis of terpanes in biodegraded oils from China using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Fuel. 133, 153–162 (2014)CrossRefGoogle Scholar
  6. 6.
    Santos, L.C., da Cruz, G.F., Avila, B.M.F., Pereira, V.B., Azevedo, D.A.: Exploratory analysis of Campos Basin crude oils via geochemical parameters by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Energy Fuel. 32, 10321–10332 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Ma, W., Zhou, N., Ren, J., Cao, J.: Analyzing crude oils from the Junggar Basin (NW China) using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS). Acta Geochim.36, 66–73 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhang, W., Zhu, S., He, S., Wang, Y.: Screening of oil sources by using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry and multivariate statistical analysis. J. Chromatogr. A. 1380, 162–170 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zhang, W., Zhu, S., Pang, L., Gao, X., Zhu, G.-T., Li, D.: Determination of diamondoids in crude oils using gas purge microsyringe extraction with comprehensive two dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A. 1478, 75–83 (2016)PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, F.C.-Y., DiSanzo, F.P., McElroy, F.C.: The applications of comprehensive two-dimensional gas chromatography in the petroleum industry. Prepr. Am. Chem. Soc. Div. Petrol. Chem. 49, 4–8 (2004)Google Scholar
  11. 11.
    Wang, F.C.-Y., Robbins, W.K., Di Sanzo, F.P., McElroy, F.C.: Speciation of sulfur-containing compounds in diesel by comprehensive two-dimensional gas chromatography. J. Chromatogr. Sci. 41, 519–523 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Wang, F.C.-Y., Robbins, W.K., Greaney, M.A.: Speciation of nitrogen-containing compounds in diesel fuel by comprehensive two-dimensional gas chromatography. J. Sep. Sci. 27, 468–472 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Dutriez, T., Courtiade, M., Thiebaut, D., Dulot, H., Hennion, M.-C.: Improved hydrocarbons analysis of heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. Fuel. 89, 2338–2345 (2010)CrossRefGoogle Scholar
  14. 14.
    Parker, A., McGregor, L., Barden, D.: GC × GC-FID for routine analysis of total petroleum hydrocarbons. LCGC N. Am. 14–15. UBM Life Sciences (2017)Google Scholar
  15. 15.
    Striebich, R.C., Shafer, L.M., Adams, R.K., West, Z.J., DeWitt, M.J., Zabarnick, S.: Hydrocarbon group-type analysis of petroleum-derived and synthetic fuels using two-dimensional gas chromatography. Energy Fuel. 28, 5696–5706 (2014)CrossRefGoogle Scholar
  16. 16.
    Van, G.K.M., Pyl, S.P., Reyniers, M.-F., Vercammen, J., Beens, J., Marin, G.B.: On-line analysis of complex hydrocarbon mixtures using comprehensive two-dimensional gas chromatography. J. Chromatogr. A. 1217, 6623–6633 (2010)CrossRefGoogle Scholar
  17. 17.
    Wang, F.C.-Y., Zhang, L.: Chemical composition of group II lubricant oil studied by high-resolution gas chromatography and comprehensive two-dimensional gas chromatography. Energy Fuel. 21, 3477–3483 (2007)CrossRefGoogle Scholar
  18. 18.
    Machado, M.E.: Comprehensive two-dimensional gas chromatography for the analysis of nitrogen-containing compounds in fossil fuels: a review. Talanta. 198, 263–276 (2019)PubMedCrossRefGoogle Scholar
  19. 19.
    Li, S., Cao, J., Hu, S.: Analyzing hydrocarbon fractions in crude oils by two-dimensional gas chromatography/time-of-flight mass spectrometry under reversed-phase column system. Fuel. 158, 191–199 (2015)CrossRefGoogle Scholar
  20. 20.
    Lu, H., Shi, Q., Lu, J., Sheng, G., Peng, P.: a.; Hsu, C. S. Petroleum sulfur biomarkers analyzed by comprehensive two-dimensional gas chromatography sulfur-specific detection and mass spectrometry. Energy Fuel. 27, 7245–7251 (2013)CrossRefGoogle Scholar
  21. 21.
    Oliveira, C.R., Ferreira, A.A., Oliveira, C.J.F., Azevedo, D.A., Santos Neto, E.V., Aquino Neto, F.R.: Biomarkers in crude oil revealed by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry: depositional paleoenvironment proxies. Org. Geochem. 46, 154–164 (2012)CrossRefGoogle Scholar
  22. 22.
    Weng, N., Wang, H., Zhang, S., Zhu, G., Cai, D., Wan, S., Liu, J., Yang, Y.: Insight into unresolved complex mixtures of aromatic hydrocarbons in heavy oil via two-dimensional gas chromatography coupled with time-of-flight mass spectrometry analysis. J. Chromatogr. A. 1398, 94–107 (2015)PubMedCrossRefGoogle Scholar
  23. 23.
    Walters, C.C., Wang, F.C., Higgins, M.B., Madincea, M.E.: Universal biomarker analysis: aromatic hydrocarbons. Org. Geochem. 124, 205–214 (2018)CrossRefGoogle Scholar
  24. 24.
    Walters, C.C., Wang, F.C., Higgins, M.B., Madincea, M.E.: Universal biomarker analysis using GC×GC with dual FID and ToF-MS (EI/FI) detection. Org. Geochem. 115, 57–66 (2018)CrossRefGoogle Scholar
  25. 25.
    Genuit, W., Chaabani, H.: Comprehensive two-dimensional gas chromatography-field ionization time-of-flight mass spectrometry (GCxGC-FI-TOFMS) for detailed hydrocarbon middle distillate analysis. Int. J. Mass Spectrom. 413, 27–32 (2017)CrossRefGoogle Scholar
  26. 26.
    Giri, A., Coutriade, M., Racaud, A., Stefanuto, P.-H., Okuda, K., Dane, J., Cody, R.B., Focant, J.-F.: Compositional elucidation of heavy petroleum base oil by GC × GC-EI/PI/CI/FI-TOFMS. J. Mass Spectrom. 54, 148–157 (2019)PubMedCrossRefGoogle Scholar
  27. 27.
    Piotrowski, P.K., Tasker, T.L., Burgos, W.D., Dorman, F.L.: Applications of thermal desorption coupled to comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for hydrocarbon fingerprinting of hydraulically fractured shale rocks. J. Chromatogr. A. 1579, 99–105 (2018)PubMedCrossRefGoogle Scholar
  28. 28.
    Piotrowski, P.K., Weggler, B.A., Barth-Naftilan, E., Kelly, C.N., Zimmermann, R., Saiers, J.E., Dorman, F.L.: Non-Targeted chemical characterization of a Marcellus shale gas well through GC × GC with scripting algorithms and high-resolution time-of-flight mass spectrometry. Fuel. 215, 363–369 (2018)CrossRefGoogle Scholar
  29. 29.
    Piotrowski, P.K., Weggler, B.A., Yoxtheimer, D.A., Kelly, C.N., Barth-Naftilan, E., Saiers, J.E., Dorman, F.L.: Elucidating environmental fingerprinting mechanisms of unconventional gas development through hydrocarbon analysis. Anal. Chem. 90, 5466–5473 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Androulakis, I.P., Weisel, M.D., Hsu, C.S., Qian, K., Green, L.A., Farrell, J.T., Nakakita, K.: An integrated approach for creating model diesel fuels. Energy Fuel. 19, 111–119 (2005)CrossRefGoogle Scholar
  31. 31.
    Qian, K., Dechert, G.J.: Recent advances in petroleum characterization by GC field ionization time-of-flight high-resolution mass spectrometry. Anal. Chem. 74, 3977–3983 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Qian, K., Dechert, G.J., Edwards, K.E.: Deducing molecular compositions of petroleum products using GC-field ionization high resolution time of flight mass spectrometry. Int. J. Mass Spectrom. 265, 230–236 (2007)CrossRefGoogle Scholar
  33. 33.
    Ubukatal, M., Reichenbach, S.E., Tao, Q., Wu, Z., Dane, A.J., Cody, R.B.: Detailed type analysis of petroleum samples by using comprehensive two-dimensional gas chromatography/highresolution mass spectrometry with field ionization. Prepr. - Am. Chem. Soc., Div. Energy Fuels. 60, 642 (2015)Google Scholar
  34. 34.
    Wang, F.C.-Y., Qian, K., Green, L.A.: GC×MS of diesel: a two-dimensional separation approach. Anal. Chem. 77, 2777–2785 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Eschner, M.S., Welthagen, W., Groeger, T.M., Gonin, M., Fuhrer, K., Zimmermann, R.: Comprehensive multidimensional separation methods by hyphenation of single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS) with GC and GC×GC. Anal. Bioanal. Chem. 398, 1435–1445 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Welthagen, W., Mitschke, S., Muehlberger, F., Zimmermann, R.: One-dimensional and comprehensive two-dimensional gas chromatography coupled to soft photo ionization time-of-flight mass spectrometry: a two- and three-dimensional separation approach. J. Chromatogr. A. 1150, 54–61 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mitschke, S., Welthagen, W., Zimmermann, R.: Comprehensive gas chromatography-time-of-flight mass spectrometry using soft and selective photoionization techniques. Anal. Chem. 78, 6364–6375 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wang, F.C.-Y.: Comprehensive three-dimensional gas chromatography mass spectrometry separation of diesel. J. Chromatogr. A. 1489, 126–133 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Byer, J.D., Siek, K., Jobst, K.: Distinguishing the C3 vs SH4 mass split by comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry. Anal. Chem. 88, 6101–6104 (2016)PubMedCrossRefGoogle Scholar
  40. 40.
    Qian, K., Robbins, W.K., Hughey, C.A., Cooper, H.J., Rodgers, R.P., Marshall, A.G.: Resolution and identification of elemental compositions for more than 3000 crude acids in heavy petroleum by negative-ion microelectrospray high-field Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuel. 15, 1505–1511 (2001)CrossRefGoogle Scholar
  41. 41.
    Qian, K., Rodgers, R.P., Hendrickson, C.L., Emmett, M.R., Marshall, A.G.: Reading chemical fine print: resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum. Energy Fuel. 15, 492–498 (2001)CrossRefGoogle Scholar
  42. 42.
    Schaub, T.M., Hendrickson, C.L., Qian, K., Quinn, J.P., Marshall, A.G.: High-resolution field desorption/ionization Fourier transform ion cyclotron resonance mass analysis of nonpolar molecules. Anal. Chem. 75, 2172–2176 (2003)PubMedCrossRefGoogle Scholar
  43. 43.
    Kendrick, E.: A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal. Chem. 35, 2146–2154 (1963)CrossRefGoogle Scholar
  44. 44.
    Hsu, C.S., Qian, K., Chen, Y.C.: An innovative approach to data analysis in hydrocarbon characterization by online liquid chromatography-mass spectrometry. Anal. Chim. Acta. 264, 79–89 (1992)CrossRefGoogle Scholar
  45. 45.
    Hughey, C.A., Hendrickson, C.L., Rodgers, R.P., Marshall, A.G., Qian, K.: Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 73, 4676–4681 (2001)PubMedCrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.ExxonMobil Research Engineering CompanyAnnandaleUSA

Personalised recommendations