Advertisement

Ion-Ion Interactions in Charge Detection Mass Spectrometry

  • Daniel Y. Botamanenko
  • Martin F. JarroldEmail author
Research Article

Abstract

Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined by simultaneously measuring their mass-to-charge ratio (m/z) and charge. Ions are usually trapped inside an electrostatic linear ion trap (ELIT) where they oscillate back and forth through a detection cylinder, generating a periodic signal that is analyzed by fast Fourier transforms. The oscillation frequency is related to the ion’s m/z, and the magnitude is related to the ion’s charge. In early work, multiple ion trapping events were discarded because there was a question about whether ion-ion interactions affected the results. Here, we report trajectory calculations performed to assess the influence of ion-ion interactions when multiple highly charged ions are simultaneously trapped in an ELIT. Ion-ion interactions cause trajectory and energy fluctuations that lead to variations in the oscillation frequencies that in turn degrade the precision and accuracy of the m/z measurements. The peak shapes acquire substantial high and low m/z tails, and the average m/z shifts to a higher value as the number of trapped ions increases. The effects of the ion-ion interactions are proportional to the product of the charges and the square root of the number of trapped ions and depend on the ions’ m/z distribution. For the ELIT design examined here, ion-ion interactions limit the m/z resolving power to several hundred for a typical homogeneous ion population.

Keywords

Ion-ion interactions Charge detection mass spectrometry CDMS Electrostatic linear ion trap ELIT 

Notes

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R01GM131100. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Yamashita, M., Fenn, J.B.: Electrospray ion source. Another variation on the free jet theme. J. Phys. Chem. 88, 4451–4459 (1984)CrossRefGoogle Scholar
  2. 2.
    Tito, M.A., Tars, K., Valegard, K., Hajdu, J., Robinson, C.V.: Electrospray time-of-flight mass spectrometry of the intact MS2 virus capsid. J. Am. Chem. Soc. 122, 3550–3551 (2000)CrossRefGoogle Scholar
  3. 3.
    Lossl, P., Snijder, J., Heck, A.J.: Boundaries of mass resolution in native mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 906–917 (2014)CrossRefGoogle Scholar
  4. 4.
    Uetrecht, C., Versluis, C., Watts, N.R., Roos, W.H., Wuite, G.J.L., Wingfield, P.T., Steven, A.C., Heck, A.J.R.: High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl. Acad. Sci. U. S. A. 105, 9216–9220 (2008)CrossRefGoogle Scholar
  5. 5.
    Snijder, J., Rose, R.J., Veesler, D., Johnson, J.E., Heck, A.J.R.: Studying 18 MDa virus assemblies with native mass spectrometry. Angew. Chem. Int. Ed. 52, 4020–4023 (2013)CrossRefGoogle Scholar
  6. 6.
    Keifer, D.Z., Jarrold, M.F.: Single-molecule mass spectrometry. Mass Spectrom. Rev. 36, 715–733 (2017)CrossRefGoogle Scholar
  7. 7.
    Fuerstenau, S.D., Benner, W.H.: Molecular weight determination of megadalton-DNA electrospray ions using charge detection mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1528–1538 (1995)CrossRefGoogle Scholar
  8. 8.
    Schultz, J.C., Hack, C.A., Benner, W.H.: Mass determination of megadalton-DNA electrospray ions using charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 9, 305–313 (1998)CrossRefGoogle Scholar
  9. 9.
    Schultz, J.C., Hack, C.A., Benner, W.H.: Polymerase chain reaction products analyzed by charge detection mass spectrometry. Rapid Commun. Mass Spectrom. 13, 15–20 (1999)CrossRefGoogle Scholar
  10. 10.
    Fuerstenau, S.D., Benner, W.H., Thomas, J.J., Brugidou, C., Bothner, B., Siuzdak, G.: Mass spectrometry of an intact virus. Angew. Chem. Int. Ed. 2001(113), 559–562 (2001)CrossRefGoogle Scholar
  11. 11.
    Doussineau, T., Mathevon, C., Altamura, L., Vendrely, C., Dugourd, P., Forge, V., Antoine, R.: Mass determination of entire amyloid fibrils by using mass spectrometry. Angew. Chem. Int. Ed. 55, 2340–2344 (2016)CrossRefGoogle Scholar
  12. 12.
    Doussineau, T., Kerleroux, M., Dagany, X., Clavier, C., Barbaire, M., Maurelli, J., Antoine, R., Dugourd, P.: Charging megadalton poly(ethylene oxide)s by electrospray ionization. A charge detection mass spectrometry study. Rapid Commun. Mass Spectrom. 25, 617–623 (2011)CrossRefGoogle Scholar
  13. 13.
    Doussineau, T., Désert, A., Lambert, O., Taveau, J.-C., Lansalot, M., Dugourd, P., Bourgeat-Lami, E., Ravaine, S., Duguet, E., Antoine, R.: Charge detection mass spectrometry for the characterization of mass and surface area of composite nanoparticles. J. Phys. Chem. C. 119, 10844–10849 (2015)CrossRefGoogle Scholar
  14. 14.
    Benner, W.H.: A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. Anal. Chem. 69, 4162–4168 (1997)Google Scholar
  15. 15.
    Contino, N.C., Jarrold, M.F.: Charge detection mass spectrometry for single ions with a limit of detection of 30 charges. Int. J. Mass Spectrom. 345-347, 153–159 (2013)CrossRefGoogle Scholar
  16. 16.
    Contino, N.C., Pierson, E.E., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry with resolved charge states. J. Am. Soc. Mass Spectrom. 24, 101–108 (2013)CrossRefGoogle Scholar
  17. 17.
    Pierson, E.E., Contino, N.C., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry for single ions with an uncertainty in the charge measurement of 0.65 e. J. Am. Soc. Mass Spectrom. 26, 1213–1220 (2015)CrossRefGoogle Scholar
  18. 18.
    Keifer, D.Z., Shinholt, D.L., Jarrold, M.F.: Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87, 10330–10337 (2015)CrossRefGoogle Scholar
  19. 19.
    Draper, B.E., Anthony, S.N., Jarrold, M.F.: The FUNPET – a new hybrid ion funnel-ion carpet atmospheric pressure interface for the simultaneous transmission of a broad mass range. J. Am. Soc. Mass Spectrom. 29, 2160–2172 (2018)CrossRefGoogle Scholar
  20. 20.
    Hogan, J.A., Jarrold, M.F.: Optimized electrostatic linear ion trap for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 29, 2086–2095 (2018)CrossRefGoogle Scholar
  21. 21.
    Draper, B.E., Jarrold, M.F.: Real time analysis and signal optimization for charge detection mass spectrometry. J. Am. Soc. Mass Spectrom. 30, 989–904 (2019)CrossRefGoogle Scholar
  22. 22.
    Keifer, D.Z., Pierson, E.E., Jarrold, M.F.: Charge detection mass spectrometry: weighing heavier things. Analyst. 142, 1654–1671 (2017)CrossRefGoogle Scholar
  23. 23.
    Harper, C.C., Elliott, A.G., Oltrogge, L.M., Savage, D.F., Williams, E.R.: Multiplexed charge detection mass spectrometry for high throughput single ion analysis of large molecules. Anal. Chem. 91, 7458–7465 (2019)CrossRefGoogle Scholar
  24. 24.
    Beeman, D.: Some multistep methods for use in molecular dynamics calculations. J. Comput. Phys. 20, 130–139 (1976)CrossRefGoogle Scholar
  25. 25.
    Bellan, P.M.: Fundamentals of plasma physics, Pp 12-13. University Press, Cambridge (2006)CrossRefGoogle Scholar
  26. 26.
    Zajfman, D., Heber, O., Rappaport, M.L., Pedersen, H.B., Strasser, D., Goldberg, S.: Self-bunching effect in an ion trap resonator. J. Opt. Soc. Am. 20, 1028–1032 (2003)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations