1,4-Benzoquinone as a Highly Efficient Dopant for Enhanced Ionization and Detection of Nitramine Explosives on a Single-Quadrupole Mass Spectrometer Fitted with a Helium-Plasma Ionization (HePI) Source

  • Julius Pavlov
  • David Douce
  • Steve Bajic
  • Athula B. AttygalleEmail author
Research Article


Previous investigations have evaluated the efficacy of anions such as NO3, Cl, Br, CH3COO, and CF3COO as additives to generate or enhance mass spectrometric signals from explosives under plasma ionization conditions. The results of this study demonstrate that for detecting nitramine-class explosives, such as 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 1,4-benzoquinone (BQ) is a highly effective and efficient dopant. When used in conjunction with ambient-pressure negative-ion helium-plasma ionization (HePI), 1,4-benzoquinone readily captures an electron, forming an abundant molecular anion (m/z 108), which upon exposure to vapors of RDX and HMX generates adduct ions of m/z 330 and 404, respectively. The signal level recorded for RDX upon adduction to the radical anion of 1,4-benzoquinone under our experimental conditions was significantly higher than that realized by chloride adduction using dichloromethane (DCM) as the dopant.


1,4-Benzoquinone Nitramine explosives Ambient mass spectrometry Ionization methods Gas-phase adducts Electron-capture ionization 



We thank the Waters Corporation, Wilmslow, Cheshire, UK, for providing the QDa mass spectrometer.

Supplementary material

13361_2019_2339_MOESM1_ESM.docx (4.2 mb)
ESM 1 (DOCX 4270 kb)


  1. 1.
    Moore, D.S.: Recent advances in trace explosives detection instrumentation. Sens. Imaging. 8, 9–38 (2007)CrossRefGoogle Scholar
  2. 2.
    Hallowell, S.F.: Screening people for illicit substances: a survey of current portal technology. Talanta. 54, 447–458 (2001)CrossRefGoogle Scholar
  3. 3.
    Yinon, J.: Analysis and detection of explosives by mass spectrometry. In: Marshall, M., Oxley, J.C. (eds.) Aspects of explosives detection, pp. 147–169. Elsevier, Amsterdam (2009)CrossRefGoogle Scholar
  4. 4.
    Moore, D.S.: Instrumentation for trace detection of high explosives. Rev. Sci. Instrum. 75, 2499 (2004)CrossRefGoogle Scholar
  5. 5.
    Davis, E.J., Dwivedi, P., Tam, M., Siems, W., Hill, H.H.: High-pressure ion mobility spectrometry. Anal. Chem. 81, 3270–3275 (2009)CrossRefGoogle Scholar
  6. 6.
    Schulte-Ladbeck, R., Kolla, P., Karst, U.: Trace analysis of peroxide-based explosives. Anal. Chem. 75, 731–735 (2003)CrossRefGoogle Scholar
  7. 7.
    Crowson, A., Beardah, M.S.: Development of an LC/MS method for the race analysis of hexamithylenetriperoxidediamine (HMTD). Analyst. 126, 1689–1693 (2001)CrossRefGoogle Scholar
  8. 8.
    Widmer, L., Watson, S., Schlatter, K., Crowson, A.: Development of an LC/MS method for the trace analysis of triacetone triperoxide (TATP). Analyst. 127, 1627 (2002)CrossRefGoogle Scholar
  9. 9.
    Pan, X.P., Tian, K., Jones, L.E., Cobb, G.P.: Method optimization for quantitative analysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by liquid chromatography-electrospray ionization mass spectrometry. Talanta. 70, 455–459 (2006)CrossRefGoogle Scholar
  10. 10.
    Vigneau, O., Machuron-Mandard, X.: A LC-MS method allowing the analysis of HMX and RDX present at the picogram level in natural aqueous samples without a concentration step. Talanta. 77, 1609–1613 (2009)CrossRefGoogle Scholar
  11. 11.
    Anilanmert, B., Aydin, M., Apak, R., Avci, G.Y., Cengiz, S.: A fast liquid chromatography tandem mass spectrometric analysis of PETN (pentaerythritol tetranitrate), RDX (3,5-trinitro-1,3,5-triazacyclohexane) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in soil, utilizing a simple ultrasonic-assisted extraction with minimum solvent. Anal. Sci. 32, 611–616 (2016)CrossRefGoogle Scholar
  12. 12.
    Miller, M.L., Leibowitz, J., Martz, R.: Additive enhancement for ESI of nitrated explosives. Cobb. G.P.: Proceedings of 44th ASMS Conference on Mass Spectrometry and Allied Topics, Portland, OR, 1996, p. 1389.Google Scholar
  13. 13.
    Zhao, X., Yinon, J.: Identification of nitrate ester explosives by liquid chromatography–electrospray ionization and atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A. 977, 59–68 (2002)CrossRefGoogle Scholar
  14. 14.
    Batlle, R., Nerin, C., Crescenzi, C., Carlsson, H.: Supercritical fluid extraction of energetic nitroaromatic compounds and their degradation products in soil samples. Anal. Chem. 77, 4241–4247 (2005)CrossRefGoogle Scholar
  15. 15.
    Slack, G.C., McNair, H.M., Wasserzug, L.: Characterization of Semtex by supercritical fluid extraction and off-line GC-ECD and GC-MS. J. Sep. Sci. 15, 102–104 (1992)Google Scholar
  16. 16.
    Guerra, P., Lai, H., Almirall, J.R.: Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry. J. Sep. Sci. 31, 2891–2898 (2008)CrossRefGoogle Scholar
  17. 17.
    Lynch, J.C., Brannon, J.M., Delfino, J.J.: Dissolution rates of three high explosive compounds: TNT, RDX, and HMX. Chemosphere. 47, 725–734 (2002)CrossRefGoogle Scholar
  18. 18.
    Hutchinson, J.P., Evenhuis, C.J., Johns, C., Kazarian, A.A., Breadmore, M.C., Macka, M., Hilder, E.F., Guijt, R.M., Dicinoski, G.W., Haddad, P.R.: Identification of inorganic improvised explosive devices by analysis of postblast residues using portable capillary electrophoresis instrumentation and indirect photometric detection with a light-emitting diode. Anal. Chem. 79, 7005–7013 (2007)CrossRefGoogle Scholar
  19. 19.
    Johns, C., Shellie, R.A., Potter, O.G., O’Reilly, J.W., Hutchinson, J.P., Guijt, R.M., Breadmore, M.C., Hilder, E.F., Dicinoski, G.W., Haddad, P.R.: Identification of homemade inorganic explosives by ion chromatographic analysis of post-blast residues. J. Chromatogr. A. 1182, 205–214 (2008)CrossRefGoogle Scholar
  20. 20.
    Sigman, M.E., Clark, C.D., Fidler, R., Geiger, C.L., Clausen, C.A.: Analysis of triacetone triperoxide by gas chromatography/mass spectrometry and gas chromatography/tandem mass spectrometry by electron and chemical ionization. Rapid Commun. Mass Spectrom. 20, 2851–2857 (2006)CrossRefGoogle Scholar
  21. 21.
    Eiceman, G.A., Gardea-Torresdey, J., Dorman, F., Overton, E., Bhushan, A., Dharmasena, H.P.: Gas chromatography. Anal. Chem. 78, 3985–3996 (2006)CrossRefGoogle Scholar
  22. 22.
    Forbes, T.P., Sisco, E.: Recent advances in ambient mass spectrometry of trace explosives. Analyst. 143, 1948–1969 (2018)CrossRefGoogle Scholar
  23. 23.
    Sisco, E., Dake, J., Bridge, C.: Screening for trace explosives by AccuTOF™-DART: an in-depth validation study. Forensic Sci. Int. 232, 160–168 (2013)CrossRefGoogle Scholar
  24. 24.
    Harris, G.A., Galhena, A.S., Fernández, F.M.A.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83, 4508–4538 (2011)CrossRefGoogle Scholar
  25. 25.
    Na, N., Zhang, C., Zhao, M., Zhang, S., Yang, C., Fang, X., Zhang, X.: Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. J. Mass Spectrom. 42, 1079–1085 (2007)CrossRefGoogle Scholar
  26. 26.
    Garcia-Reyes, J.F., Harper, J.D., Salazar, G.A., Charipar, N.A., Ouyang, Z., Cooks, R.G.: Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Anal. Chem. 83, 1084–1092 (2011)CrossRefGoogle Scholar
  27. 27.
    Forbes, T.P., Sisco, E., Staymates, M.: Recent advances in ambient mass spectrometry of trace explosives. Anal. Chem. 90, 6419–6425 (2018)CrossRefGoogle Scholar
  28. 28.
    Schütz, A., Lara-Ortega, F.J., Klute, F.D., Brandt, S., Schilling, M., Michels, A., Veza, D., Horvatic, A., García-Reyes, J.F., Franzke, J.: Soft argon–propane dielectric barrier discharge ionization. Anal. Chem. 90, 3537–3542 (2018)CrossRefGoogle Scholar
  29. 29.
    Ewing, R.G., Valenzuela, B.R., Atkinson, D.A., Wilcox Freeburg, E.D.: Detection of inorganic salt-based homemade explosives (HME) by atmospheric flow tube–mass spectrometry. Anal. Chem. 90, 8086–8092 (2018)CrossRefGoogle Scholar
  30. 30.
    Rahman, M.M., Jiang, T., Tang, Y., Xu, W.: A simple desorption atmospheric pressure chemical ionization method for enhanced non-volatile sample analysis. Anal. Chim. Acta. 1002, 62–69 (2018)CrossRefGoogle Scholar
  31. 31.
    Yang, Z., Pavlov, J., Attygalle, A.B.: Quantification and remote detection of nitro explosives by helium plasma ionization mass spectrometry (HePI-MS) on a modified atmospheric pressure source designed for electrospray ionization. J. Mass Spectrom. 47, 845–852 (2012)CrossRefGoogle Scholar
  32. 32.
    Ewing, R.G., Atkinson, D.A., Clowers, B.H.: Direct real-time detection of RDX vapors under ambient conditions. Anal. Chem. 85, 389–397 (2013)CrossRefGoogle Scholar
  33. 33.
    Kelley, J.A., Ostrinskaya, A., Geurtsen, G., Kunz, R.R.: Reagent approaches for improved detection of chlorate and perchlorate salts via thermal desorption and ionization. Rapid Commun. Mass Spectrom. 30, 191–198 (2016)CrossRefGoogle Scholar
  34. 34.
    Nilles, J.M., Connell, T.R., Stokes, S.T., Durst, H.D.: Explosives detection using direct analysis in real time (dart) mass spectrometry. Propellants Explos. Pyrotech. 35, 446–451 (2010)CrossRefGoogle Scholar
  35. 35.
    Nilles, J.M., Connell, T.R., Durst, H.D.: Quantitation of chemical warfare agents using the direct analysis in real time (DART) technique. Anal. Chem. 81, 6744–6749 (2009)CrossRefGoogle Scholar
  36. 36.
    Pavlov, J., Attygalle, A.B.: Direct detection of inorganic nitrate salts by ambient pressure helium-plasma ionization mass spectrometry. Anal. Chem. 85, 278–282 (2013)CrossRefGoogle Scholar
  37. 37.
    Chen, W., Hou, K., Hua, L., Li, H.: Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives. Analyst. 140, 6025–6030 (2015)CrossRefGoogle Scholar
  38. 38.
    Yang, Z., Attygalle, A.B.: Aliphatic hydrocarbon spectra by helium ionization mass spectrometry (HIMS) on a modified atmospheric-pressure source designed for electrospray ionization. J. Am. Soc. Mass Spectrom. 22, 1395–1402 (2011)CrossRefGoogle Scholar
  39. 39.
    Saha, S., Mandal, M.K., Chen, L.C., Ninomiya, S., Shida, Y., Hiraoka, K.: Trace level detection of explosives in solution using Leidenfrost phenomenon assisted thermal desorption ambient mass spectrometry. Mass Spectrom. 2(S0008), 1–5 (2013)Google Scholar
  40. 40.
    Khvostenko, O.G., Shchukin, P.V., Tuimedov, G.M., Muftakhov, M.V., Tseplin, E.E., Tseplina, S.N., Mazunov, V.N.: Negative ion mass spectrum of the resonance electron capture by molecules of p-benzoquinone. Int. J. Mass Spectrom. 273, 69–77 (2008)CrossRefGoogle Scholar
  41. 41.
    Usmanov, D.T., Yu, Z., Chen, L.C., Hiraoka, K., Yamabe, S.: Low-pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives. J. Mass Spectrom. 51, 132–140 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Center for Mass Spectrometry, Department of Chemistry and Chemical BiologyStevens Institute of TechnologyHobokenUSA
  2. 2.Waters CorporationWilmslowUK

Personalised recommendations