Advertisement

Preferential Ion Microsolvation in Mixed-Modifier Environments Observed Using Differential Mobility Spectrometry

  • Neville J. A. Coughlan
  • Chang Liu
  • Michael J. Lecours
  • J. Larry CampbellEmail author
  • W. Scott HopkinsEmail author
Research Article

Abstract

The preferential solvation behavior for eight different derivatives of protonated quinoline was measured in a tandem differential mobility spectrometer mass spectrometer (DMS-MS). Ion-solvent cluster formation was induced in the DMS by the addition of chemical modifiers (i.e., solvent vapors) to the N2 buffer gas. To determine the effect of more than one modifier in the DMS environment, we performed DMS experiments with varying mixtures of water, acetonitrile, and isopropyl alcohol solvent vapors. The results show that doping the buffer gas with a binary mixture of modifiers leads to the ions binding preferentially to one modifier over another. We used density functional theory to calculate the ion-solvent binding energies, and in all cases, calculations show that the quinolinium ions bind most strongly with acetonitrile, then isopropyl alcohol, and most weakly with water. Computational results support the hypothesis that the quinolinium ions bind exclusively to whichever solvent they have the strongest interaction with, regardless of the presence of other modifier gases.

Keywords

Differential ion mobility DMS Ion mobility Modifiers Preferential solvation Gas-phase solvation DFT Ion-solvent clustering 

Notes

Acknowledgements

The authors acknowledge high-performance computing support from the SHARCNET consortium of Compute Canada. WSH acknowledges financial support from the Natural Sciences and Engineering Research Council (NSERC) via the Discovery Grant and Collaborative Research and Development Grant schemes. WSH also acknowledges financial support from the Ontario Centres of Excellence in the form of a VIP-II grant, as well as the government of Ontario for an Ontario Early Researcher Award. MJL acknowledges financial support from the NSERC for a Vanier Graduate Scholarship.

Supplementary material

13361_2019_2332_MOESM1_ESM.pdf (8.9 mb)
ESM 1 (PDF 9112 kb)

References

  1. 1.
    Van, S.-P., Hammond, G.S.: Amine quenching of aromatic fluorescence and fluorescent exciplexes. J. Am. Chem. Soc. 100, 3895–3902 (1978)CrossRefGoogle Scholar
  2. 2.
    El Seoud, O.A.: Solvation in pure and mixed solvents: some recent developments. Pure Appl. Chem. 79, 1135–1151 (2007)CrossRefGoogle Scholar
  3. 3.
    Wakisaka, A., Shimizu, Y., Nishi, N., Tokumaru, K., Sakuragi, H.: Interaction of hydrophobic molecules with water influenced by the clustering conditions of acetonitrile-water mixtures. J. Chem. Soc. Faraday Trans. 88, 1129–1135 (1992)CrossRefGoogle Scholar
  4. 4.
    Laha, A.K., Das, P.K., Bagchi, S.: Study of preferential solvation in mixed binary solvent as a function of solvent composition and temperature by UV-Vis spectroscopic method. J. Phys. Chem. A. 106, 3230–3234 (2002)CrossRefGoogle Scholar
  5. 5.
    Agmon, N.: The dynamics of preferential solvation. J. Phys. Chem. A. 106, 7256–7260 (2002)CrossRefGoogle Scholar
  6. 6.
    Fujii, K.; Kumai, T.; Takamuku, T.; Umebayashi, Y.; Ishiguro, S.-i.: Liquid structure and preferential solvation of metal ions in solvent mixtures of N,N-dimethylformamide and N-methylformamide. J. Phys. Chem. A 110, 1798–1804 (2006)Google Scholar
  7. 7.
    Bagno, A., Scorrano, G.: Selectivity in proton transfer, hydrogen bonding, and solvation. Acc. Chem. Res. 33, 609–616 (2000)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zheng, D., Qu, D., Yang, X.Q., Lee, H.-S., Qu, D.: Preferential solvation of lithium cations and impacts on oxygen reduction in lithium-air batteries. ACS Appl. Mater. Interfaces. 7, 19923–19929 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kovrigin, E.L., Potekhin, S.A.: Preferential solvation changes upon lysozyme heat denaturation in mixed solvents. Biochem. 36, 9195–9199 (1997)CrossRefGoogle Scholar
  10. 10.
    Wakisaka, A., Komatsu, S., Usui, Y.: Solute-solvent and solvent-solvent interactions evaluated through clusters isolated from solutions: preferential solvation in water-alcohol mixtures. J. Mol. Liq. 90, 175–184 (2001)CrossRefGoogle Scholar
  11. 11.
    Silva, M.A.d.R., Silva, D.C., Machado, V.G., Longhinotti, E., Frescura, V.L.A.: Preferential solvation of a hydrophobic probe in binary mixtures comprised of a nonprotic and a hydroxylic solvent: a view of solute-solvent and solvent-solvent interactions. J. Phys. Chem. A. 106, 8820–8826 (2002)Google Scholar
  12. 12.
    Bagno, A.: Probing the solvation shell of organic molecules by intermolecular 1H NOESY. J. Phys. Org. Chem. 15, 790–795 (2002)CrossRefGoogle Scholar
  13. 13.
    Rastrelli, F., Saielli, G., Bagno, A.: Preferential association and self-association in alcohol-acetonitrile mixtures observed through mass spectrometric analysis of clusters: influence of alkyl chain length. J. Phys. Chem. B. 108, 3479–3487 (2004)CrossRefGoogle Scholar
  14. 14.
    Kebarle, P., Haynes, R.N., Collins, J.G.: Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase. J. Am. Chem. Soc. 89, 5753–5757 (1967)CrossRefGoogle Scholar
  15. 15.
    Džidić, I., Kebarle, P.: Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n-1 + H2O = M+(H2O)n. J. Phys. Chem. 74, 1466–1474 (1970)CrossRefGoogle Scholar
  16. 16.
    Nielsen, S.B., Masella, M., Kebarle, P.: Competitive gas-phase solvation of alkali metal ions by water and methanol. J. Phys. Chem. A. 103, 9891–9898 (1999)CrossRefGoogle Scholar
  17. 17.
    Duncombe, B.J., Rydén, J.O.S., Puškar, L., Cox, H., Stace, A.J.: A gas-phase study of the preferential solvation of Mn2+ in mixed water/methanol clusters. J. Am. Soc. Mass Spectrom. 19, 520–530 (2008)CrossRefGoogle Scholar
  18. 18.
    Nishi, N., Yamamoto, K.: Conversion of liquids to cluster beams by adiabatic expansion of liquid jets: mass spectrometric analysis of molecular association in aqueous solution systems. J. Am. Chem. Soc. 109, 7353–7361 (1987)CrossRefGoogle Scholar
  19. 19.
    Nishi, N., Koga, K., Ohshima, C., Yamamoto, K., Nagashima, U., Nagami, K.: Molecular association in ethanol-water mixtures studied by mass spectrometric analysis of clusters generated through adiabatic expansion of liquid jets. J. Am. Chem. Soc. 110, 5246–5255 (1988)CrossRefGoogle Scholar
  20. 20.
    Yamamoto, K., Nishi, N.: Hydrophobic hydration and hydrophobic interaction of carboxylic acids in aqueous solution: mass spectrometric analysis of liquid fragments isolated as clusters. J. Am. Chem. Soc. 112, 549–558 (1990)CrossRefGoogle Scholar
  21. 21.
    Wakisaka, A., Takahashi, S., Nishi, N.: Preferential solvation controlled by clustering conditions of acetonitrile-water mixtures. J. Chem. Soc. Faraday Trans. 91, 4063–4069 (1995)CrossRefGoogle Scholar
  22. 22.
    Shin, D.N., Wijnen, J.W., Engberts, J.B.F.N., Wakisaka, A.: On the origin of microheterogeneity: a mass spectrometric study of dimethyl sulfoxide-water binary mixture. J. Phys. Chem. B. 105, 6759–6762 (2001)CrossRefGoogle Scholar
  23. 23.
    Gorshkov, M. P.: Inventor’s certificate of USSR No. 966583, G01N27/62. (1982)Google Scholar
  24. 24.
    Kolakowski, B.M., Mester, Z.: Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst. 132, 842–864 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Eiceman, G. A., Karpas, Z., Hill, H. H. J.: Eds. Ion mobility spectrometry, 3rd ed.; CRC Press, (2014)Google Scholar
  26. 26.
    Shvartsburg, A.A.: Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS. CRC Press (2009)Google Scholar
  27. 27.
    Hopkins, W. S: In Comprehensive Analytical Chemistry, Chapter Four; Donald, W. A., Prell, J., Eds.; Elsevier, Vol. 83 (2019)Google Scholar
  28. 28.
    Biondi, M. A.; Chanin, L. M: Blanc’s law–ion mobilities in helium-neon mixtures. Phys. Rev. 122, 843–847 (1961)Google Scholar
  29. 29.
    Milloy, H.B., Robson, R.E.: The mobility of potassium ions in gas mixtures. J. Phys. B. 6, 1139–1152 (1973)CrossRefGoogle Scholar
  30. 30.
    Blanc, A.: Recherches sur les mobilités des ions dans les gaz. J. Phys. Theor. Appl. 7, 825–839 (1908)CrossRefGoogle Scholar
  31. 31.
    Barnett, D.A., Purves, R.W., Ells, B., Guevremont, R.: Separation of o-, m- and p-phthalic acids by high-field asymmetric waveform ion mobility spectrometry (FAIMS) using mixed carrier gases. J. Mass Spectrom. 35, 976–980 (2000)CrossRefGoogle Scholar
  32. 32.
    Ells, B., Barnett, D.A., Purves, R.W., Guevremont, R.: Trace level determination of perchlorate in water matrices and human urine using ESI-FAIMS-MS. J. Environ. Monit. 2, 393–397 (2000a)CrossRefGoogle Scholar
  33. 33.
    Ells, B., Barnett, D.A., Purves, R.W., Guevremont, R.: Detection of nine chlorinated and brominated haloacetic acids at part-per-trillion levels using ESI-FAIMS-MS. Anal. Chem. 72, 4555–4559 (2000b)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Purves, R.W., Barnett, D.A., Ells, B., Guevremont, R.: Elongated conformers of charge states +11 to +15 of bovine ubiquitin studied using ESI-FAIMS-MS. J. Am. Soc. Mass Spectrom. 12, 894–901 (2001)CrossRefGoogle Scholar
  35. 35.
    McCooeye, M.A., Ells, B., Barnett, D.A., Purves, R.W., Guevremont, R.: Quantitation of morpheine and codeine in human urine using high-field asymmetric waveform ion mobility spectrometry (FAIMS) with mass spectrometric detection. J. Anal. Toxicol. 25, 81–87 (2013)CrossRefGoogle Scholar
  36. 36.
    Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Application of ESI-FAIMS-MS to the analysis of tryptic peptides. J. Am. Soc. Mass Spectrom. 13, 1282–1291 (2002)CrossRefGoogle Scholar
  37. 37.
    McCooeye, M.A., Mester, Z., Ells, B., Barnett, D.A., Purves, R.W., Guevremont, R.: Quantitation of amphetamine, methamphetamine, and their methylenedioxy derivatives in urine by solid-phase microextraction coupled with electrospray ionization high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 74, 3071–3075 (2002)CrossRefGoogle Scholar
  38. 38.
    Gabryelski, W., Wu, F., Froese, K.L.: Comparison of high-field asymmetric waveform ion mobility spectrometry with GC methods in analysis of haloacetic acids in drinking water. Anal. Chem. 75, 2478–2486 (2003)CrossRefGoogle Scholar
  39. 39.
    Mccooeye, M., Ding, L., Gardner, G.J., Fraser, C.A., Lam, J., Sturgeon, R.E., Mester, Z.: Separation and quantitation of the stereoisomers of ephedra alkaloids in natural health products using flow injection-electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 75, 2538–2542 (2003)CrossRefGoogle Scholar
  40. 40.
    Cui, M., Ding, L., Mester, Z.: Separation of cisplatin and its hydrolysis products using electrospray ionization high-field asymmetric waveform ion mobility spectrometry coupled with ion trap mass spectrometry. Anal. Chem. 75, 5847–5853 (2003)CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Isenberg, S.L., Armistead, P.M., Glish, G.: Optimization of peptide separations by differential ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 25, 1592–1599 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shvartsburg, A.A., Tang, K., Smith, R.D.: Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal. Chem. 76, 7366–7374 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur. J. Mass Spectrom. 16, 57–71 (2010)CrossRefGoogle Scholar
  44. 44.
    Campbell, J.L., Zhu, M., Hopkins, W.S.: Ion-molecule clustering in differential mobility spectrometry: lessons learned from tetraalkylammonium cations and their isomers. J. Am. Soc. Mass Spectrom. 25, 1583–1591 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hopkins, W.S.: Determining the properties of gas-phase clusters. Mol. Phys. 113, 3151–3158 (2015)CrossRefGoogle Scholar
  46. 46.
    Kafle, A., Coy, S.L., Wong, B.M., Fornace Jr., A.J., Glick, J.J., Vouros, P.: Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1098–1113 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Walker, S.W.C., Mark, A., Verbuyst, B., Bogdanov, B., Campbell, J.L., Hopkins, W.S.: Characterizing the tautomers of protonated aniline using differential mobility spectrometry and mass spectrometry. J. Phys. Chem. A. 122, 3858–3865 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Anwar, A., Psutka, J., Walker, S.W., Dieckmann, T., Janizewski, J.S., Campbell, J.L., Hopkins, W.S.: Separating and probing tautomers of protonated nucleobases using differential mobility spectrometry. Int. J. Mass Spectrom. 429, 174–181 (2018)CrossRefGoogle Scholar
  49. 49.
    Frisch, M. J. et al.: Gaussian 16, Revision a.03. (2016)Google Scholar
  50. 50.
    Lee, C., Yang, W., Parr, R.G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785–789 (1988)CrossRefGoogle Scholar
  51. 51.
    Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  52. 52.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.A.: Consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements. J. Chem. Phys. 132, 154104–154119 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu, C., Le Blanc, Y., Shields, J., Janiszewki, J., Ieritano, C., Ye, G., Hawes, G., Hopkins, W.S., Campbell, J.L.: Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst. 140, 6897–6903 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Liu, C., et al.: Assessing physicochemical properties of drug molecules via microsolvation measurements with differential mobility spectrometry. ACS Cent. Sci. 3, 101–109 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Walker, S.W.C., Anwar, A., Psutka, J.M., Crouse, J., Liu, C., Le Blanc, J.C.Y., Montgomery, J., Goetz, G.H., Janiszewski, J.S., Campbell, J.L., Hopkins, W.S.: Determining molecular properties with differential mobility spectrometry and machine learning. Nat. Commun. 9, 5096 (2018)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WaterlooWaterlooCanada
  2. 2.SCIEX, Four Valley Dr.ConcordCanada

Personalised recommendations