Rapid Differentiation of Asian and American Ginseng by Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Using Stepwise Modulation of Gas Modifier Concentration

  • Ri Wu
  • Xiangfeng ChenEmail author
  • Wei-Jing Wu
  • Ze Wang
  • Y.-L. Elaine Wong
  • Y.-L. Winnie Hung
  • H.-T. Wong
  • Minli Yang
  • Feng Zhang
  • T.-W. Dominic ChanEmail author
Research Article


This study reports a rapid and robust method for the differentiation of Asian and American ginseng samples based on differential ion mobility spectrometry-tandem mass spectrometry (DMS-MS/MS). Groups of bioactive ginsenoside/pseudo-ginsenoside isomers, including Rf/Rg1/F11, Rb2/Rb3/Rc, and Rd/Re, in the ginseng extracts were sequentially separated using DMS with stepwise changes in the gas modifier concentration prior to MS analysis. The identities of the spatially separated ginsenoside/pseudo-ginsenoside isomers were confirmed by their characteristic compensation voltages at specific modifier loading and MS/MS product ions. As expected, Asian ginseng samples contained some Rf and an insignificant amount of F11, whereas American ginseng samples had a high level of F11 but no Rf. The origin of the whole and sliced ginseng could further be confirmed using the quantitative ratios of three sets of ginsenoside markers, namely, Rg1/Re, Rb1/Rg1, and Rb2/Rc. Based on our results, new benchmark ratios of Rg1/Re < 0.15, Rb1/Rg1 > 2.15, and Rb2/Rc < 0.26 were proposed for American ginseng (as opposed to Asian ginseng).


Differential ion mobility spectrometry Tandem mass spectrometry Collision-induced dissociation Isomeric ginsenosides 



This work was supported by The National Key Research and Development Program of China (2018YFC1603500), Research Grant Council of the Hong Kong Special Administrative Region (Research Grant Direct Allocation, Ref. 3132667 and 4053152), Key R&D Program of Shandong Province (2019GSF111009, 2019GSF111001), and Natural Science Foundation of Shandong Province (ZR2017MB011).

Compliance with Ethical Standards

Conflict of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary material

13361_2019_2317_MOESM1_ESM.docx (1.3 mb)
ESM 1 (DOCX 1234 kb)


  1. 1.
    Leung, K.W., Wong, A.S.T.: Circumvention of multi-drug resistance of cancer cells by Chinese herbal medicines. Chi. Med. 5, 20–26 (2010)CrossRefGoogle Scholar
  2. 2.
    Baek, S.-H., Bae, O.-N., Park, J.H.: Recent methodology in ginseng analysis. J. Ginseng Res. 3, 119–134 (2012)CrossRefGoogle Scholar
  3. 3.
    Chan, T.W.D., But, P.P.H., Cheng, S.W., Kwok, I.M.Y., Lau, F.W., Xu, H.X.: Differentiation and authentication of Panax ginseng, Panax quinquefolius, and ginseng products by using HPLC/MS. Anal. Chem. 72, 1281–1287 (2000)CrossRefGoogle Scholar
  4. 4.
    Deng, G.F., Wang, D.L., Meng, M.X., Hu, F., Yao, T.W.: Simultaneous determination of notoginsenoside R1, ginsenoside Rg1, Re, Rb1 and icariin in rat plasma by ultra-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B. 877, 2113–2122 (2009)CrossRefGoogle Scholar
  5. 5.
    Wong, Y.L.E., Chen, X.F., Li, W., Wang, Z., Hung, Y.L.H., Wu, R., Chan, T.W.D.: Differentiation of isomeric ginsenosides by using electron-induced dissociation mass spectrometry. Anal. Chem. 88, 5590–5594 (2016)CrossRefGoogle Scholar
  6. 6.
    Chen, X.F., Wang, Z., Wong, Y.L.E., Wu, R., Zhang, F., Chan, T.W.D.: Electron-ion reaction-based dissociation: a powerful ion activation method for the elucidation of natural product structures. Mass Spec. Rev. 37, 793–810 (2018)CrossRefGoogle Scholar
  7. 7.
    Song, F.R., Liu, Z.Q., Liu, S.Y., Cai, Z.W.: Differentiation and identification of ginsenoside isomers by electrospray ionization tandem mass spectrometry. Anal. Chim. Acta. 531, 69–77 (2005)CrossRefGoogle Scholar
  8. 8.
    Vanhaelen-Fastré, R.J., Faes, M.L., Vanhaelen, M.H.: High-performance thin-layer chromatographic determination of six major ginsenosides in Panax ginseng. J. Chromatogr. A. 868, 269–276 (2000)CrossRefGoogle Scholar
  9. 9.
    Cui, J.F., Björkhem, I., Eneroth, P.: Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. J. Chromatogr. B. 689, 349–355 (1997)CrossRefGoogle Scholar
  10. 10.
    Ren, G.X., Chen, F.: Simultaneous quantification of ginsenosides in American ginseng (Panax quinquefolium) root powder by visible/near-infrared reflectance spectroscopy. J. Agric. Food Chem. 47, 2771–2775 (1999)CrossRefGoogle Scholar
  11. 11.
    Akao, T., Kanaoka, M., Kobashi, K.: Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration: measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21, 245–249 (1998)CrossRefGoogle Scholar
  12. 12.
    Qi, L.W., Wang, C.Z., Yuan, C.S.: Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry. 72, 689–699 (2011)CrossRefGoogle Scholar
  13. 13.
    Dodds, J.N., May, J.C., McLean, J.A.: Correlating resolving power, resolution and collision cross section: unifying cross platform assessment of separation efficiency in ion mobility spectrometry. Anal. Chem. 89, 12176–12184 (2017)CrossRefGoogle Scholar
  14. 14.
    Li, H.L., Giles, K., Bendiak, B., Kaplan, K., Siems, W.F., Hill, H.H.: Resolving structural isomers of monosaccharide methyl glycosides using drift tube and traveling wave ion mobility mass spectrometry. J. Anal. Chem. 84, 3231–3239 (2012)CrossRefGoogle Scholar
  15. 15.
    Regueiro, J., Giri, A., Wenzl, T.: Optimization of a differential ion mobility spectrometry-tandem mass spectrometry method for high-throughput analysis of nicotine and related compounds: application to electronic cigarette refill liquids. Anal. Chem. 88, 6500–6508 (2016)CrossRefGoogle Scholar
  16. 16.
    Purves, R.W., Ozog, A.R., Ambrose, S.J., Prasad, S., Belford, M., Dunyach, J.J.: Using gas modifiers to significantly improve sensitivity and selectivity in a cylindrical FAIMS device. J. Am. Soc. Mass Spectrom. 25, 1274–1284 (2014)CrossRefGoogle Scholar
  17. 17.
    Levin, D.S., Vouros, P., Miller, R.A., Nazarov, E.G., Morris, J.C.: Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal. Chem. 78, 96–106 (2006)CrossRefGoogle Scholar
  18. 18.
    Kafle, A., Coy, S.L., Wong, B.M., Fornace, A.J.J., Glick, J.J., Vouros, P.: Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 25, 1098–1113 (2014)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Ríos, G.A.G., Schneider, B.B., Blanc, J.C.Y.L., Garcés, N.R., Arnold, D.W., Covey, T.R., Pawliszyn, J.: Fast quantitation of opioid isomers in human plasma by differential mobility spectrometry/mass spectrometry via SPME/open-port probe sampling interface. Anal. Chim. Acta. 991, 89–94 (2017)CrossRefGoogle Scholar
  20. 20.
    Campbell, J.L., Yang, A.M.C., Melo, L.R., Hopkins, W.S.: Studying gas-phase interconversion of tautomers using differential mobility spectrometry. J. Am. Soc. Mass Spectrom. 27, 1277–1284 (2016)CrossRefGoogle Scholar
  21. 21.
    McCooeye, M., Ding, L.Y.G., Gardner, J., Fraser, C.A., Lam, J., Sturgeon, R.E., Mester, Z.: Separation and quantitation of the stereoisomers of ephedra alkaloids in natural health products using flow injection-electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. Anal. Chem. 75, 2538–2542 (2003)CrossRefGoogle Scholar
  22. 22.
    Bylda, C., Thiele, R., Kobold, U., Bujotzek, A., Volmer, D.A.: Rapid quantification of digitoxin and its metabolites using differential ion mobility spectrometry-tandem mass spectrometry. Anal. Chem. 87, 2121–2128 (2015)CrossRefGoogle Scholar
  23. 23.
    Chen, P.S., Chen, S.H., Chen, J.H., Haung, W.Y., Liu, H.T., Kong, P.H., Yang, O.H.Y.: Modifier-assisted differential mobility-tandem mass spectrometry method for detection and quantification of amphetamine-type stimulants in urine. Anal. Chim. Acta. 946, 1–8 (2016)CrossRefGoogle Scholar
  24. 24.
    Baba, T., Campbell, J.L., Blanc, J.C.Y.L., Baker, P.R.S., Ikeda, K.: Quantitative structural multi-class lipidomics using differential mobility-electron impact excitation of ions from organics (EIEIO) mass spectrometry. J. Lipid Res. 59, 910–919 (2018)CrossRefGoogle Scholar
  25. 25.
    Wu, R., Wu, W.J., Wang, Z., Wong, Y.L.E., Hung, Y.L.W., Wong, H.T., Chen, X.F., Chan, T.W.D.: Performance enhancements in differential ion mobility spectrometry-mass spectrometry (DMS-MS) by using a modified CaptiveSpray source. J. Am. Soc. Mass Spectrom. 29, 2199–2207 (2018)CrossRefGoogle Scholar
  26. 26.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  27. 27.
    Zhang, J.D., Kabir, K.M.M., Lee, H.E., Donald, W.A.: Metal-ion free chiral analysis of amino acids as small as proline using high-definition differential ion mobility mass spectrometry. Int. J. Mas. Spectrom. Fastre. 428, 1–7 (2018)CrossRefGoogle Scholar
  28. 28.
    Mie, A., Ray, A., Axelsson, B.O., Karlsson, M.J., Reimann, C.T.: Terbutaline enantiomer separation and quantification by complexation and field asymmetric ion mobility spectrometry-tandem mass spectrometry. Anal. Chem. 80, 4133–4140 (2008)CrossRefGoogle Scholar
  29. 29.
    Mie, A., Karlsson, M.J., Axelsson, B.O., Ray, A., Reimann, C.T.: Enantiomer separation of amino acids by complexation with chiral reference compounds and high-field asymmetric waveform ion mobility spectrometry: preliminary results and possible limitations. Anal. Chem. 79, 2850–2858 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhang, J.D., Kabir, K.M.M., Donald, W.A.: Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry. Anal. Chim. Acta. 1036, 172–178 (2018)CrossRefGoogle Scholar
  31. 31.
    Kang, O.J., Kim, J.S.: Comparison of ginsenoside contents in different parts of korean ginseng (Panax ginseng C.A. Meyer). Prev. Nutr. Food Sci. 21, 389–392 (2016)CrossRefGoogle Scholar
  32. 32.
    Wang, C.Z., Aung, H.H., Ni, M., Wu, J.A., Tong, R., Wicks, S., He, T.C., Yuan, C.S.: Red American ginseng: ginsenoside constituents and antiproliferative activities of heat-processed Panax quinquefolius roots. Planta Med. 73, 669–674 (2007)CrossRefGoogle Scholar
  33. 33.
    Liang, Z.T., Chen, Y.J., Xu, L., Qin, M.J., Yi, T., Chen, H.B., Zhao, Z.J.: Localization of ginsenosides in the rhizome and root of Panax ginseng by laser microdissection and liquid chromatography-quadrupole/time of flight-mass spectrometry. Pharmaceut. Biomed. 105, 121–133 (2015)CrossRefGoogle Scholar
  34. 34.
    Song, Y.L., Zhang, N., Jiang, Y., Li, J., Zhao, Y.F., Shi, S.P., Tu, P.F.: Simultaneous determination of aconite alkaloids and ginsenosides using online solid phase extraction hyphenated with polarity switching ultra-high performance liquid chromatography coupled with tandem mass spectrometry. RSC Adv. 5, 6419–6428 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryThe Chinese University of Hong KongShatin, N.T.People’s Republic of China
  2. 2.Shandong Analysis and Test CentreQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  3. 3.Institute of Food SafetyChinese Academy of Inspection and QuarantineBeijingChina

Personalised recommendations