Advertisement

Modulation of Gas-Phase Lithium Cation Basicities by Microsolvation

  • Konrad KoszinowskiEmail author
  • Thomas Auth
Focus: Honoring Helmut Schwarzʻs Election to the National Academy of Sciences: Research Article

Abstract

In contrast to the extensive knowledge of lithium cation affinities and basicities, the thermochemistry of microsolvated lithium cations is much less explored. Here, we determine the relative stabilities of Li(A,B)n+ complexes, n = 2 and 3, by monitoring their gas-phase reactions with A and B substrate molecules, A/B = Me2O, Et2O, tetrahydrofuran, and MeCN, in a three-dimensional quadrupole-ion trap mass spectrometer. Kinetic analysis of the observed ligand displacement reactions affords equilibrium constants, which are then converted into Gibbs reaction energies. In addition, we use high-level quantum chemical calculations to predict the structures and sequential ligand dissociation energies of the homoleptic Li(A)n+ complexes, n = 1–3. As expected, the ligands dissociate more easily from complexes in higher coordination states. However, the very nature of the ligand also matters. Ligands with different steric demands can, thus, invert their relative Li+ affinities depending on the coordination state of the metal center. This finding shows that microsolvation of Li+ can result in specific effects, which are not recognized if the analysis takes into account only simple lithium cation affinities and basicities.

Keywords

Ion-molecule reactions Lithium Quantum chemical calculations 

Notes

Acknowledgements

We gratefully acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) − 389479699/GRK2455.

Supplementary material

13361_2019_2312_MOESM1_ESM.pdf (704 kb)
ESM 1 (PDF 704 kb)
13361_2019_2312_MOESM2_ESM.tar (62 kb)
ESM 2 (TAR 61 kb)

References

  1. 1.
    Snieckus, V.: Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990)CrossRefGoogle Scholar
  2. 2.
    Phiel, C.J., Klein, P.S.: Molecular targets of lithium action. Ann. Rev. Pharm. Toxicol. 41, 789–813 (2001)CrossRefGoogle Scholar
  3. 3.
    Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4302 (2004)CrossRefGoogle Scholar
  4. 4.
    Galiano-Roth, A.S., Collum, D.B.: Structure and reactivity of lithium diisoproplyamide (LDA). The consequences of aggregation and solvation during the metalation of an N,N-dimethylhydryzone. J. Am. Chem. Soc. 111, 6772–6778 (1989)CrossRefGoogle Scholar
  5. 5.
    John, M., Auel, C., Behrens, C., Marsch, M., Harms, K., Bosold, F., Gschwind, R.M., Rajamohanan, P.R., Boche, G.: The relation between ion pair structures and reactivities of lithium cuprates. Chem. Eur. J. 6, 3060–3068 (2000)CrossRefGoogle Scholar
  6. 6.
    Nakamura, E., Mori, S.: Wherefore art thou copper? Structures and reaction mechanisms of organocuprate clusters in organic chemistry. Angew. Chem. Int. Ed. 39, 3750–3771 (2000)CrossRefGoogle Scholar
  7. 7.
    Yoshikai, N., Nakamura, E.: Mechanisms of nucleophilic organocopper(I) reactions. Chem. Rev. 112, 2339–2372 (2011)CrossRefGoogle Scholar
  8. 8.
    Woodin, R.L., Beauchamp, J.L.: Binding of lithium(1+) ion to Lewis bases in the gas phase. Reversals in methyl substituent effects for different reference acids. J. Am. Chem. Soc. 100, 501–508 (1978)CrossRefGoogle Scholar
  9. 9.
    Herreros, M., Gal, J.-F., Maria, P.-C., Decouzon, M.: Gas-phase basicity of simple amides toward proton and lithium cation: an experimental and theoretical study. Eur. J. Mass Spectrom. 5, 259–269 (1999)CrossRefGoogle Scholar
  10. 10.
    Burk, P., Koppel, I.A., Koppel, I., Kurg, R., Gal, J.-F., Maria, P.-C., Herreros, M., Notario, R., Abboud, J.-L.M., Anvia, F., Taft, R.W.: Revised and expanded scale of gas-phase lithium cation basicities. An experimental and theoretical study. J. Phys. Chem. A. 104, 2824–2833 (2000)CrossRefGoogle Scholar
  11. 11.
    Irigoras, A., Mercero, J.M., Silanes, I., Ugalde, J.M.: The ferrocene−lithium cation complex in the gas phase. J. Am. Chem. Soc. 123, 5040–5043 (2001)CrossRefGoogle Scholar
  12. 12.
    Feng, W.J., Gronert, S., Lebrilla, C.: The lithium cation binding energies of gaseous amino acids. J. Phys. Chem. A. 107, 405–410 (2003)CrossRefGoogle Scholar
  13. 13.
    Gal, J.-F., Maria, P.-C., Mò, O., Yáñez, M., Kuck, D.: Complexes between lithium cation and diphenylalkanes in the gas phase: the pincer effect. Chem. Eur. J. 12, 7676–7683 (2006)CrossRefGoogle Scholar
  14. 14.
    Gal, J.-F., Maria, P.-C., Decouzon, M., Mó, O., Yáñez, M.: Gas-phase lithium-cation basicities of some benzene derivatives: an experimental and theoretical study. Int. J. Mass Spectrom. 219, 445–456 (2002)CrossRefGoogle Scholar
  15. 15.
    Hallmann, M., Raczyńska, E.D., Gal, J.-F., Maria, P.-C.: Gas-phase lithium cation basicity of histamine and its agonist 2-(β-aminoethyl)-pyridine: experimental (FT-ICR-MS) and theoretical studies (DFT) of chelation effect. Int. J. Mass Spectrom. 267, 315–323 (2007)CrossRefGoogle Scholar
  16. 16.
    Rodgers, M.T., Armentrout, P.B.: Cationic noncovalent interactions: energetics and periodic trends. Chem. Rev. 116, 6542–5687 (2016)CrossRefGoogle Scholar
  17. 17.
    Rodgers, M.T., Armentrout, P.B.: A critical evaluation of the experimental and theoretical determination of lithium cation affinities. Int. J. Mass Spectrom. 267, 167–182 (2007)CrossRefGoogle Scholar
  18. 18.
    Dzidic, I., Kebarle, P.: Hydration of the alkali ions in the gas phase. Enthalpies and entropies of reactions M+(H2O)n−1 + H2O = M+(H2O)n. J. Phys. Chem. 74, 1466–1474 (1970)CrossRefGoogle Scholar
  19. 19.
    More, M.B., Glendening, E.D., Ray, D., Feller, D., Armentrout, P.B.: Cation–ether complexes in the gas phase: bond dissociation energies and equilibrium structures of Li+[O(CH3)2]x, x = 1–4. J. Phys. Chem. 100, 1605–1614 (1996)CrossRefGoogle Scholar
  20. 20.
    Koszinowski, K., Böhrer, P.: Aggregation and reactivity of organozincate anions probed by electrospray mass spectrometry. Organometallics. 28, 100–110 (2009)CrossRefGoogle Scholar
  21. 21.
    Putau, A., Koszinowski, K.: Association and dissociation of lithium cyanocuprates in ethereal solvents. Organometallics. 30, 4771–4778 (2011)CrossRefGoogle Scholar
  22. 22.
    Koszinowski, K.: Oxidation state, aggregation, and heterolytic dissociation of allyl indium reagents. J. Am. Chem. Soc. 132, 6032–6040 (2010)CrossRefGoogle Scholar
  23. 23.
    Putau, A., Koszinowski, K.: Probing cyanocuprates by electrospray ionization mass spectrometry. Organometallics 29, 3593-3601 (2010); addition/correction. Organometallics. 29, 6841–6842 (2010)CrossRefGoogle Scholar
  24. 24.
    Parchomyk, T., Koszinowski, K.: Substitution reactions of gaseous ions in a three-dimensional quadrupole ion trap. J. Mass Spectrom. 54, 81–87 (2019)CrossRefGoogle Scholar
  25. 25.
    Gronert, S.: Estimation of effective ion temperatures in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 9, 845–848 (1998)CrossRefGoogle Scholar
  26. 26.
    Gronert, S., Pratt, L.M., Mogali, S.: Substituent effects in gas-phase substitutions and eliminations: β-halo substituents. Solvation reverses SN2 substituent effects. J. Am. Chem. Soc. 123, 3081–3091 (2001)CrossRefGoogle Scholar
  27. 27.
    Waters, T., O’Hair, R.A.J., Wedd, A.G.: Catalytic gas phase oxidation of methanol to formaldehyde. J. Am. Chem. Soc. 125, 3384–3396 (2003)CrossRefGoogle Scholar
  28. 28.
    Mendes, P.: GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Applic. Biosci. 9, 563–571 (1993)Google Scholar
  29. 29.
    Mendes, P.: Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem. Sci. 22, 361–363 (1997)CrossRefGoogle Scholar
  30. 30.
    Mendes, P., Kell, D.B.: Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics. 14, 869–883 (1998)CrossRefGoogle Scholar
  31. 31.
    Gioumousis, G., Stevenson, D.P.: Reactions of gaseous molecule ions with gaseous molecules. V. Theory. J. Chem. Phys. 29, 294–299 (1958)Google Scholar
  32. 32.
    For the experiments with Me2O/THF, only two out of the four measurements afforded reliable resultsGoogle Scholar
  33. 33.
    Neese, F.: The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73–78 (2012)Google Scholar
  34. 34.
    Neese, F.: Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev.: Comput. Mol. Sci. (2018).  https://doi.org/10.1002/wcms.1327
  35. 35.
    ORCA, version 4.0; Max Planck Institute for Chemical Energy Conversion: Mülheim a. d. Ruhr, Germany (2017)Google Scholar
  36. 36.
    Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999)CrossRefGoogle Scholar
  37. 37.
    Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)CrossRefGoogle Scholar
  38. 38.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)CrossRefGoogle Scholar
  39. 39.
    Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)CrossRefGoogle Scholar
  40. 40.
    Grimme, S., Brandenburg, J.G., Bannwarth, C., Hansen, A.: Consistent structures and interactions by density functional theory with small atomic orbital basis sets. J. Chem. Phys. 143, 054107 (2015)CrossRefGoogle Scholar
  41. 41.
    Grimme, S.: Supramolecular binding thermodynamics by dispersion-corrected density functional theory. Chem. Eur. J. 18, 9955–9964 (2012)CrossRefGoogle Scholar
  42. 42.
    Glowacki, D.R., Liang, C.-H., Morley, C., Pilling, M.J., Robertson, S.H.: MESMER: an open-source master equation solver for multi-energy well reactions. J. Phys. Chem. A. 116, 9545–9560 (2012)CrossRefGoogle Scholar
  43. 43.
    Riplinger, C., Neese, F.: An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 138, 034106 (2013)CrossRefGoogle Scholar
  44. 44.
    Riplinger, C., Sandhoefer, B., Hansen, A., Neese, F.: Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013)CrossRefGoogle Scholar
  45. 45.
    Riplinger, C., Pinski, P., Becker, U., Valeev, E.F., Neese, F.: Sparse maps—a systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. J. Chem. Phys. 144, 024109 (2016)CrossRefGoogle Scholar
  46. 46.
    Dunning Jr., T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)CrossRefGoogle Scholar
  47. 47.
    Prascher, B.P., Woon, D.E., Peterson, K.A., Dunning Jr., T.H., Wilson, A.K.: Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 128, 69–82 (2011)CrossRefGoogle Scholar
  48. 48.
    Weigend, F., Köhn, A., Hättig, C.: Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116, 3175–3183 (2002)CrossRefGoogle Scholar
  49. 49.
    Hättig, C.: Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 7, 59–66 (2005)CrossRefGoogle Scholar
  50. 50.
    Møller, C., Plesset, M.S.: Note on an approximation treatment for many-electron systems. Phys. Rev. 46, 618–622 (1934)CrossRefGoogle Scholar
  51. 51.
    Szabo, A., Ostlund, N.S.: Modern quantum chemistry: introduction to advanced electronic structure theory, pp. 350–353. Dover Publications, New York (1996)Google Scholar
  52. 52.
    Chesnavich, W., Su, T., Bowers, M.T.: Collisions in a noncentral field: a variational and trajectory investigation of ion-dipole capture. J. Chem. Phys. 72, 2641–2655 (1980)CrossRefGoogle Scholar
  53. 53.
    As explained in the Experimental Section, the fitting procedure determined reliable ratios of bimolecular rates constants, but no reliable individual absolute rate constantsGoogle Scholar
  54. 54.
    An alternative way to determine the relative stabilities of Li(A,B)2 + complexes would compare the relative rates of the different fragmentation reactions of heteroleptic Li(A,B)3 + complexes upon energetic collisions (so-called kinetic method): Cooks, R. G., Wong, P. S. H.: Kinetic method of making thermochemical determinations: advances and applications. Acc. Chem. Res. 31, 379–386 (1998)Google Scholar
  55. 55.
    For the Li(THF)3 + complex, two D3-symmetric diastereomers were identified, which differ significantly with respect to their electronic energy. As the electronically less stable diastereomer features a lower G°(298 K) value, only this structure is considered in Figure 5 and within the calculation of dissociation energies (for details, see Figure S16)Google Scholar
  56. 56.
    For the calculation of sequential ligand dissociation energies of the Li(Et2O)3 + complex, we have only considered the trans-trans conformation of Et2O because, in agreement with previous experimental studies [57], our calculations predict this conformation to be the most stable one. Similarly, Li(Et2O)n + complexes (n = 1–3) featuring one trans-gauche Et2O ligand turned out to be less stable than or, in case of (n = 3), equally stable as the complexes with only trans-trans Et2O ligands. Consequently, we have used only the latter for the calculation of dissociation energies (for details, see Figure S17)Google Scholar
  57. 57.
    Kuze, N., Kuroki, N., Takeuchi, H., Egawa, T., Konaka, S.: Structural and conformational analysis of diethyl ether by molecular orbital constrained electron diffraction combined with microwave spectroscopic data. J. Mol. Struct. 301, 81–94 (1993)CrossRefGoogle Scholar
  58. 58.
    Sparta, M., Neese, F.: Chemical applications carried out by local pair natural orbital based coupled-cluster methods. Chem. Soc. Rev. 43, 5032–5041 (2014)CrossRefGoogle Scholar
  59. 59.
    Liakos, D.G., Sparta, M., Kesharwani, M.K., Martin, J.M.L., Neese, F.: Exploring the accuracy limits of local pair natural orbital coupled-cluster theory. J. Chem. Theory Comput. 11, 1525–1539 (2015)CrossRefGoogle Scholar
  60. 60.
    Minenkov, Y., Bistoni, G., Riplinger, C., Auer, A.A., Neese, F., Cavallo, L.: Pair natural orbital and canonical coupled cluster reaction enthalpies involving light to heavy alkali and alkaline earth metals: the importance of sub-valence correlation. Phys. Chem. Chem. Phys. 19, 9374–9391 (2017)CrossRefGoogle Scholar
  61. 61.
    Helgaker, T., Jørgensen, P., Olsen, J.: Molecular electronic structure theory, 1st edn. Wiley & Sons, Ltd., West Sussex (2000)Google Scholar
  62. 62.
    Minenkov, Y., Chermak, E., Cavallo, L.: Accuracy of DLPNO–CCSD(T) method for noncovalent bond dissociation enthalpies from coinage metal cation complexes. J. Chem. Theory Comput. 11, 4664–4676 (2015)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Institut für Organische und Biomolekulare ChemieUniversität GöttingenGöttingenGermany

Personalised recommendations