Advertisement

STORI Plots Enable Accurate Tracking of Individual Ion Signals

  • Jared O. Kafader
  • Steven C. Beu
  • Bryan P. Early
  • Rafael D. Melani
  • Kenneth R. Durbin
  • Vlad Zabrouskov
  • Alexander A. Makarov
  • Joshua T. Maze
  • Deven L. Shinholt
  • Ping F. Yip
  • Neil L. Kelleher
  • Philip D. Compton
  • Michael W. SenkoEmail author
Short Communication

Abstract

Charge detection mass spectrometry (CDMS) of low-level signals is currently limited to the analysis of individual ions that generate a persistent signal during the entire observation period. Ions that disintegrate during the observation period produce reduced frequency domain signal amplitudes, which lead to an underestimation of the ion charge state, and thus the ion mass. The charge assignment can only be corrected through an accurate determination of the time of ion disintegration. The traditional mechanisms for temporal signal analysis have severe limitations for temporal resolution, spectral resolution, and signal-to-noise ratios. Selective Temporal Overview of Resonant Ions (STORI) plots provide a new framework to accurately analyze low-level time domain signals of individual ions. STORI plots allow for complete correction of intermittent signals, the differentiation of single and multiple ions at the same frequency, and the association of signals that spontaneously change frequency.

Keywords

Single ion mass spectrometry Orbitrap FT-MS Ion signal analysis Charge detection mass spectrometry 

Notes

Acknowledgements

This work was funded by the Intensifying Innovation program from Thermo Fisher Scientific and was carried out in collaboration with the National Resource for Translational and Developmental Proteomics under Grant P41 GM108569 from the National Institute of General Medical Sciences, National Institutes of Health with additional support from the Sherman Fairchild Foundation.

Supplementary material

13361_2019_2309_MOESM1_ESM.pptx (206 kb)
ESM 1 (PPTX 205 kb)

References

  1. 1.
    Mann, M., Meng, C.K., Fenn, J.B.: Interpreting mass spectra of multiply charged ions. Anal. Chem. 61, 1702–1708 (1989)CrossRefGoogle Scholar
  2. 2.
    Senko, M.W., Beu, S.C., McLafferty, F.W.: Automated assignment of charge states from resolved isotopic peaks for multiply charged ions. J. Am. Soc. Mass Spectrom. 6, 52–56 (1995)CrossRefGoogle Scholar
  3. 3.
    Keifer, D.Z., Pierson, E.E., Jarrold, M.F.: Charge detection mass spectrometry: weighing heavier things. Analyst. 142, 1654–1671 (2017)CrossRefGoogle Scholar
  4. 4.
    Schmidt, H.T., Cederquist, H., Jensen, J., Fardi, A.: Conetrap: a compact electrostatic ion trap. Nucl. Instrum. Methods Phys. Res., Sect. B. 173, 523–527 (2001)Google Scholar
  5. 5.
    Elliott, A.G., Harper, C.C., Lin, H.W., Williams, E.R.: Mass, mobility and MSn measurements of single ions using charge detection mass spectrometry. Analyst. 142, 2760–2769 (2017)Google Scholar
  6. 6.
    Keifer, D.Z., Shinholt, D.L., Jarrold, M.F.: Charge detection mass spectrometry with almost perfect charge accuracy. Anal. Chem. 87, 10330–10337 (2015)CrossRefGoogle Scholar
  7. 7.
    Benner, W.H.: A gated electrostatic ion trap to repetitiously measure the charge and m/z of large electrospray ions. Anal. Chem. 69, 4162–4168 (1997)Google Scholar
  8. 8.
    Halim, M.A., Clavier, C., Dagany, X., Kerleroux, M., Dugourd, P., Dunbar, R.C., Antoine, R.: Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events. Phys. Chem. Chem. Phys. 20, 11959–11966 (2018)Google Scholar
  9. 9.
    Elliott, A.G., Harper, C.C., Lin, H.W., Susa, A.C., Xia, Z., Williams, E.R.: Simultaneous measurements of mass and collisional cross-section of single ions with charge detection mass spectrometry. Anal. Chem. 89, 7701–7708 (2017)Google Scholar
  10. 10.
    Contino, N.C., Pierson, E.E., Keifer, D.Z., Jarrold, M.F.: Charge detection mass spectrometry with resolved charge states. J. Am. Soc. Mass Spectrom. 24, 101–108 (2013)Google Scholar
  11. 11.
    Contino, N.C., Jarrold, M.F.: Charge detection mass spectrometry for single ions with a limit of detection of 30 charges. Int. J. Mass Spectrom. 345-347, 153–159 (2013)CrossRefGoogle Scholar
  12. 12.
    Cohen, L.: Time-frequency distributions-a review. Proc. IEEE. 77, 941–981 (1989)CrossRefGoogle Scholar
  13. 13.
    High throughput charge detection mass spectrometry, Botamanenko, D., Todd, A.R., Jarrold, M.F.: MP494, Proceedings of the 67th ASMS Conference on Mass Spectrometry and Allied Topics, Atlanta, Georgia, June 2-6, 2019.Google Scholar
  14. 14.
    Harper, C.C., Elliott, A.G., Oltrogge, L.M., Savage, D.F., Williams, E.R.: Multiplexed charge detection mass spectrometry for high-throughput single ion analysis of large molecules. Anal. Chem. 91, 7458–7465 (2019)CrossRefGoogle Scholar
  15. 15.
    Kafader, J.O., Melani, R.D., Senko, M.W., Makarov, A.A., Kelleher, N.L., Compton, P.D.: Measurement of individual ions sharply increases the resolution of orbitrap mass spectra of proteins. Anal. Chem. 91, 2776–2783 (2019)Google Scholar
  16. 16.
    Hofstadler, S.A., Bruce, J.E. Rockwood, A.L., Anderson, G.A., Winger, B.E., Smith, R.D.: Isotopic beat patterns in Fourier transform ion cyclotron resonance mass spectrometry: implications for high resolution mass measurements of large biopolymers. Int. J. Mass Spectrom. Ion Process. 132, 109–127 (1994)Google Scholar
  17. 17.
    Chen, L., Cottrell, C.E., Marshall, A.G.: Effect of signal-to-noise ratio and number of data points upon precision in measurement of peak amplitude, position and width in fourier transform spectrometry. Chemom. Intell. Lab. Syst. 1, 51–58 (1986)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Jared O. Kafader
    • 1
  • Steven C. Beu
    • 2
  • Bryan P. Early
    • 1
  • Rafael D. Melani
    • 1
  • Kenneth R. Durbin
    • 1
  • Vlad Zabrouskov
    • 3
  • Alexander A. Makarov
    • 4
  • Joshua T. Maze
    • 5
  • Deven L. Shinholt
    • 5
  • Ping F. Yip
    • 3
  • Neil L. Kelleher
    • 1
  • Philip D. Compton
    • 1
  • Michael W. Senko
    • 3
    Email author
  1. 1.Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes InstituteThe Proteomics Center of Excellence at Northwestern UniversityEvanstonUSA
  2. 2.S.C. Beu ConsultingAustinUSA
  3. 3.Thermo Fisher ScientificSan JoseUSA
  4. 4.Thermo Fisher ScientificBremenGermany
  5. 5.Thermo Fisher ScientificAustinUSA

Personalised recommendations