Advertisement

Ion Manipulation in Open Air Using 3D-Printed Electrodes

  • Kiran Iyer
  • Brett M. Marsh
  • Grace O. Capek
  • Robert L. Schrader
  • Shane TichyEmail author
  • R. Graham CooksEmail author
Research Article

Abstract

Ambient ionization techniques provide a way to sample materials via creation of ions in the air. However, transferring and focusing of these ions is typically done in the reduced pressure environment of the mass spectrometer. Spray-based ambient ionization sources require relatively large distances between the source and mass spectrometer inlet for effective desolvation, resulting in a small fraction of the ions being collected. To increase the efficiency of ion transfer from atmosphere to vacuum, 3D-printed focusing devices made of conductive carbon nanotube doped polymers have been designed and evaluated for ion focusing in air. Three main classes of electrodes are considered: (i) conic section electrodes (conical, ellipsoidal, and cylindrical), (ii) simple conductive and non-conductive apertures, and (iii) electrodes with complex geometries (straight, chicane, and curved). Simulations of ion trajectories performed using the statistical diffusion simulation (SDS) model in SIMION showed a measure of agreement with experiment. Cross-sectional images of ion beams were captured using an ion detecting charge-coupled device (IonCCD). After optimization, the best arrangements of electrodes were coupled to an Agilent Ultivo triple quadrupole to record mass spectra. Observations suggest that electrode geometry strongly influences ion trajectories in air. Non-conductive electrodes also assisted in focusing, due to charge buildup from ion deposition. We also observed minimal spreading of the ion packet after exiting the focusing electrodes indicating that atmospheric collisions do not reduce collimation of the beam. The study suggests that high pressures need not be viewed as a hindrance to ion transport, but as a potentially useful force.

Keywords

Ambient ionization Additive manufacturing Ion focusing Triple quadrupole Ion transmission 

Notes

Acknowledgements

This work was supported by Agilent Technologies Inc. through gift #4212. We thank Pei Su and Julia Laskin for assistance with the IonCCD measurements.

Supplementary material

13361_2019_2307_MOESM1_ESM.docx (645 kb)
ESM 1 (DOCX 645 kb)

References

  1. 1.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9(1), 37–70 (1990)CrossRefGoogle Scholar
  2. 2.
    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306(5695), 471–473 (2004)CrossRefGoogle Scholar
  3. 3.
    Wang, H., Liu, J.J., Cooks, R.G., Ouyang, Z.: Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. Int. Ed. 49(5), 877–880 (2010)CrossRefGoogle Scholar
  4. 4.
    Harris, G.A., Galhena, A.S., Fernandez, F.M.: Ambient sampling/ionization mass spectrometry: applications and current trends. Anal. Chem. 83(12), 4508–4538 (2011)CrossRefGoogle Scholar
  5. 5.
    Stopka, S.A., Samarah, L.Z., Shaw, J.B., Liyu, A.V., Velickovic, D., Agtuca, B.J., Kukolj, C., Koppenaal, D.W., Stacey, G., Pasa-Tolic, L., Anderton, C.R., Vertes, A.: Ambient metabolic profiling and imaging of biological samples with ultrahigh molecular resolution using laser ablation electrospray ionization 21 tesla FTICR mass spectrometry. Anal. Chem. 91(8), 5028–5035 (2019)CrossRefGoogle Scholar
  6. 6.
    Alberici, R.M., Simas, R.C., Sanvido, G.B., Romao, W., Lalli, P.M., Benassi, M., Cunha, I.B.S., Eberlin, M.N.: Ambient mass spectrometry: bringing MS into the "real world". Anal. Bioanal. Chem. 398(1), 265–294 (2010)CrossRefGoogle Scholar
  7. 7.
    Page, J.S., Kelly, R.T., Tang, K., Smith, R.D.: Ionization and transmission efficiency in an electrospray ionization-mass spectrometry interface. J. Am. Soc. Mass Spectrom. 18(9), 1582–1590 (2007)CrossRefGoogle Scholar
  8. 8.
    Cox, J.T., Marginean, I., Smith, R.D., Tang, K.Q.: On the ionization and ion transmission efficiencies of different ESI-MS interfaces. J. Am. Soc. Mass Spectrom. 26(1), 55–62 (2015)CrossRefGoogle Scholar
  9. 9.
    Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20(6), 362–387 (2001)CrossRefGoogle Scholar
  10. 10.
    Kelly, R.T., Tolmachev, A.V., Page, J.S., Tang, K.Q., Smith, R.D.: The ion funnel: theory, implementations, and applications. Mass Spectrom. Rev. 29(2), 294–312 (2010)PubMedPubMedCentralGoogle Scholar
  11. 11.
    Amsden, J.J., Gehm, M.E., Russell, Z.E., Chen, E.X., Di Dona, S.T., Wolter, S.D., Danell, R.M., Kibelka, G., Parker, C.B., Stoner, B.R., Brady, D.J., Glass, J.T.: Coded apertures in mass spectrometry. Annu. Rev. Anal. Chem. 10, 141–156 (2017)CrossRefGoogle Scholar
  12. 12.
    Janulyte, A., Zerega, Y., Andre, J., Brkic, B., Taylor, S.: Performance assessment of a portable mass spectrometer using a linear ion trap operated in non-scanning mode. 30 (22), 2407–2415 (2016)Google Scholar
  13. 13.
    Badu-Tawiah, A.K., Wu, C.P., Cooks, R.G.: Ambient ion soft landing. Anal. Chem. 83(7), 2648–2654 (2011)CrossRefGoogle Scholar
  14. 14.
    Saf, R., Goriup, M., Steindl, T., Hamedinger, T.E., Sandholzer, D., Hayn, G.: Thin organic films by atmospheric-pressure ion deposition. Nat. Mater. 3(5), 323–329 (2004)CrossRefGoogle Scholar
  15. 15.
    Li, A.Y., Luo, Q.J., Park, S.J., Cooks, R.G.: Synthesis and catalytic reactions of nanoparticles formed by electrospray ionization of coinage metals. Angew. Chem. Int. Ed. 53(12), 3147–3150 (2014)CrossRefGoogle Scholar
  16. 16.
    Baird, Z., Peng, W.P., Cooks, R.G.: Ion transport and focal properties of an ellipsoidal electrode operated at atmospheric pressure. Int. J. Mass Spectrom. 330, 277–284 (2012)CrossRefGoogle Scholar
  17. 17.
    Baird, Z., Wei, P., Cooks, R.G.: Ion creation, ion focusing, ion/molecule reactions, ion separation, and ion detection in the open air in a small plastic device. Analyst. 140(3), 696–700 (2015)CrossRefGoogle Scholar
  18. 18.
    Foo, C., Lim, H. N., Mahdi, M. A., HaniffWahid, M., Huang, N. M.: Three-dimensional printed electrode and its novel applications in electronic devices. Sci Rep-Uk. 8 (2018)Google Scholar
  19. 19.
    Hadjar, O., Schlatholter, T., Davila, S., Catledge, S.A., Kuhn, K., Kassan, S., Kibelka, G., Cameron, C., Verbeck, G.F.: IonCCD detector for miniature sector-field mass spectrometer: investigation of peak shape and detector surface artifacts induced by keV ion detection. J. Am. Soc. Mass Spectrom. 22(10), 1872–1884 (2011)CrossRefGoogle Scholar
  20. 20.
    Appelhans, A.D., Dahl, D.A.: SIMION ion optics simulations at atmospheric pressure. Int. J. Mass Spectrom. 244(1), 1–14 (2005)CrossRefGoogle Scholar
  21. 21.
    Li, A.Y., Baird, Z., Bag, S., Sarkar, D., Prabhath, A., Pradeep, T., Cooks, R.G.: Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 53(46), 12528–12531 (2014)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Agilent TechnologiesSanta ClaraUSA

Personalised recommendations