Chiral Differentiation of Non-Covalent Diastereomers Based on Multichannel Dissociation Induced by 213-nm Ultraviolet Photodissociation

  • Yingying Shi
  • Min Zhou
  • Kailin Zhang
  • Lifu Ma
  • Xianglei KongEmail author
Research Article


Here we present the implementation of 213-nm ultraviolet photodissociation (UVPD) in a FT-ICR mass spectrometer for chiral differentiation in the gas phase. The l/d amino acid–substituted serine octamer ions were selected as examples of diastereoisomers for chiral analysis. Several kinds of fragment ions were observed in these experiments, including fragment ions that are similar to the ones observed in corresponding collision-activated dissociation (CAD) experiments, fragment ions generated with different protonation sites by only destroying non-covalent bonds, and unique non-covalent cluster radical ions. The latter two kinds of fragment ions are found to be more sensitive to the chirality of the substituted units. Further experiments suggest that the formation of radical ions is mainly affected by chromophores on side chains of the substituted units and micro surroundings of the characterized non-covalent diastereoisomers. A comparing experiment performed by only changing the wavelength of UV laser to 266 nm shows that the 213-nm UV laser has the priority in the diversity of fragmentation pathways and potential of further application in chiral differentiation experiments.


Chiral differentiation Ultraviolet photodissociation Serine octamer Amino acids Fragmentation pathways Radical ions 



Financial support from the National Natural Science Foundation of China (Nos. 21627801, 21475065) is gratefully acknowledged.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

13361_2019_2302_MOESM1_ESM.docx (884 kb)
ESM 1 (DOCX 884 kb)


  1. 1.
    Nguyen, L.A., He, H., Pham-Huy, C.: Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006)Google Scholar
  2. 2.
    Ward, T.J., Baker, B.A.: Chiral separations. Anal. Chem. 80, 4363–4372 (2008)CrossRefGoogle Scholar
  3. 3.
    Tao, W.A., Cooks, R.G.: Chiral analysis by MS. Anal. Chem. 75, 25A–31A (2003)CrossRefGoogle Scholar
  4. 4.
    Wu, L., Vogt, F.G.: A review of recent advances in mass spectrometric methods for gas-phase chiral analysis of pharmaceutical and biological compounds. J. Pharm. Biomed. Anal. 69, 133–147 (2012)CrossRefGoogle Scholar
  5. 5.
    Awad, H., El-Aneed, A.: Enantioselectivity of mass spectrometry: challenges and promises. Mass Spectrom. Rev. 32, 466–483 (2013)Google Scholar
  6. 6.
    Yu, X., Yao, Z.P.: Chiral recognition and determination of enantiometric excess by mass spectrometry: a review. Anal. Chim. Acta. 968, 1–20 (2017)CrossRefGoogle Scholar
  7. 7.
    Sawada, M., Takai, Y., Kaneda, T., Arakawa, R., Okamoto, M., Doe, H., Matsuo, T., Naemura, K., Hirose, K., Tobe, Y.: Chiral molecular recognition in electrospray ionization mass spectrometry. Chem. Commun. 0, 1735–1736 (1996)CrossRefGoogle Scholar
  8. 8.
    Ramirez, J., He, F., Lebrilla, C.B.: Gas-phase chiral differentiation of amino acid guests in cyclodextrin hosts. J. Am. Chem. Soc. 120, 7387–7388 (1998)CrossRefGoogle Scholar
  9. 9.
    Tao, W.A., Zhang, D., Wang, F., Thomas, P.D., Cooks, R.G.: Kinetic resolution of D, L-amino acids based on gas-phase dissociation of copper(II) complexes. Anal. Chem. 71, 4427–4429 (1999)CrossRefGoogle Scholar
  10. 10.
    Tao, W.A., Zhang, D., Nikolaev, E.N., Cooks, R.G.: Copper(II)-assisted enantiomeric analysis of D, L-amino acids using the kinetic method: chiral recognition and quantification in the gas phase. J. Am. Chem. Soc. 122, 10598–10609 (2000)CrossRefGoogle Scholar
  11. 11.
    Yao, Z.P., Wan, T.S.M., Kwong, K.P., Che, C.T.: Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 1. Chiral recognition of 19 common amino acids. Anal. Chem. 72, 5383–5393 (2000)CrossRefGoogle Scholar
  12. 12.
    Yao, Z.P., Wan, T.S.M., Kwong, K.P., Che, C.T.: Chiral analysis by electrospray ionization mass spectrometry/mass spectrometry. 2. Determination of enantiomeric excess of amino acids. Anal. Chem. 72, 5394–5401 (2000)CrossRefGoogle Scholar
  13. 13.
    Liu, Q., Zhang, S.Z., Wu, B.D., Guo, J.F., Xie, J.W., Gu, M.S., Zhao, Y.M., Yun, L.H., Liu, K.L.: Chiral melamine derivatives: design, synthesis, and application to mass spectrometry based chiral analysis. Anal. Chem. 77, 5302–5310 (2005)CrossRefGoogle Scholar
  14. 14.
    Enders, J.R., McLean, J.A.: Chiral and structural analysis of biomolecules using mass spectrometry and ion mobility-mass spectrometry. Chirality. 21, E253–E264 (2009)CrossRefGoogle Scholar
  15. 15.
    Kong, X.L.: Chiral differentiation of amino acids by the kinetic method by Fourier transform ion cyclotron resonance mass spectrometry via a different dissociation pathway. Rapid Commun. Mass Spectrom. 26, 870–873 (2012)CrossRefGoogle Scholar
  16. 16.
    Piovesana, S., Samperi, R., Lagana, A., Bella, M.: Determination of enantioselectivity and enantiomeric excess by mass spectrometry in the absence of chiral chromatographic separation: an overview. Chem. Eur. J. 19, 11478–11494 (2013)CrossRefGoogle Scholar
  17. 17.
    Kong, X.L., Huo, Z.Y., Zhai, W.: Chiral differentiation of amino acids by in source collision-induced dissociation mass spectrometry. Mass Spectrom. 3, S0031 (2014)CrossRefGoogle Scholar
  18. 18.
    Bain, R.M., Yan, X., Raab, S.A., Ayrton, S.T., Flick, T.G., Cooks, R.G.: On-line chiral analysis using the kinetic method. Analyst. 141, 2441–2446 (2016)CrossRefGoogle Scholar
  19. 19.
    Filippi, A., Fraschetti, C., Piccirillo, S., Rondino, F., Botta, B., D’Acquarica, I., Calcaterra, A., Speranza, M.: Chirality effects on the IRMPD spectra of basket resorcinarene/ nucleoside complexes. Chem. Eur. J. 18, 8320–8328 (2012)CrossRefGoogle Scholar
  20. 20.
    Rondino, F., Ciavardini, A., Satta, M., Paladini, A., Fraschetti, C., Filippi, A., Botta, B., Calcaterra, A., Speranza, M., Giardini, A., Piccirillo, S.: Ultraviolet and infrared spectroscopy of neutral and ionic non-covalent diastereomeric complexes in the gas phase. Rend. Fis. Acc. Lincei. 24, 259–267 (2013)CrossRefGoogle Scholar
  21. 21.
    Sunahori, F.X., Yang, G.C., Kitova, E.N., Klassen, J.S., Xu, Y.J.: Chirality recognition of the protonated serine dimer and octamer by infrared multiphoton dissociation spectroscopy. Phys. Chem. Chem. Phys. 15, 1873–1886 (2013)CrossRefGoogle Scholar
  22. 22.
    Liao, G.H., Yang, Y.J., Kong, X.L.: Chirality effects on proline-substituted serine octamers revealed by infrared photodissociation spectroscopy. Phys. Chem. Chem. Phys. 16, 1554–1558 (2014)CrossRefGoogle Scholar
  23. 23.
    Ren, J., Wang, Y.Y., Feng, R.X., Kong, X.L.: Investigation of L/D-threonine substituted L-serine octamer ions by mass spectrometry and infrared photodissociation spectroscopy. Chin. Chem. Lett. 28, 537–540 (2017)CrossRefGoogle Scholar
  24. 24.
    Lee, S.S., Park, S., Yin, H., Lee, J., Kim, J.H., Yoon, D., Kong, X., Lee, S., Oh, H.B.: Chiral differentiation of D- and L-alanine by permethylated β-Cyclodextrin: IRMPD spectroscopy and DFT methods. Phys. Chem. Chem. Phys. 19, 14729–14737 (2017)CrossRefGoogle Scholar
  25. 25.
    Lee, S.S., Lee, J., Oh, J.H., Park, S., Yin, H., Min, B.K., Lee, H.H.L., Kim, H.I., Kong, X., Lee, S., Oh, H.B.: Chiral differentiation of D- and L-isoleucine using permethylated β-Cyclodextrin: infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Phys. Chem. Chem. Phys. 20, 30428–30436 (2018)CrossRefGoogle Scholar
  26. 26.
    Klyne, J., Bouchet, A., Ishiuchi, S., Fujii, M., Schneider, M., Baldauf, C., Dopfer, O.: Probing chirality recognition of protonated glutamic acid dimers by gas-phase vibrational spectroscopy and first-principles simulations. Phys. Chem. Chem. Phys. 20, 28452–28464 (2018)CrossRefGoogle Scholar
  27. 27.
    Seo, J., Warnke, S., Pagel, K., Bowers, M.T., von Helden, G.: Infrared spectrum and structure of the homochiral serine octamer-dichloride complex. Nat. Chem. 9, 1263–1268 (2017)CrossRefGoogle Scholar
  28. 28.
    Scutelnic, V., Perez, M.A.S., Marianski, M., Warnke, S., Gregor, A., Rothlisberger, U., Bowers, M.T., Baldauf, C., von Helden, G., Rizzo, T.R., Seo, J.: The structure of the protonated serine octamer. J. Am. Chem. Soc. 140, 7554–7560 (2018)CrossRefGoogle Scholar
  29. 29.
    Fujihara, A., Maeda, N., Hayakawa, S.: Enantiomer-selective photolysis of cold gas-phase tryptophan in L-serine clusters with linearly polarized light. Orig. Life Evol. Biosph. 44, 67–73 (2014)CrossRefGoogle Scholar
  30. 30.
    Fujihara, A., Sato, T., Hayakawa, S.: Enantiomer-selective ultraviolet photolysis of temperature-controlled protonated tryptophan on a chiral crown ether in the gas phase. Chem. Phys. Lett. 610-611, 228–233 (2014)CrossRefGoogle Scholar
  31. 31.
    Fujihara, A., Maeda, N., Hayakawa, S.: Quantitative chiral analysis of tryptophan using enantiomer-selective photolysis of cold non-covalent complexes in the gas phase. J. Mass Spectrom. 50, 451–453 (2015)CrossRefGoogle Scholar
  32. 32.
    Fujihara, A., Maeda, N., Hayakawa, S.: Enantioselective photolysis and quantitative chiral analysis of tryptophan complexed with alkali-metalized L-serine in the gas phase. Chirality. 27, 349–352 (2015)CrossRefGoogle Scholar
  33. 33.
    Fujihara, A., Maeda, N., Hayakawa, S.: Chiral recognition between L-alanine peptides and tryptophan enantiomers probed by ultraviolet photodissociation in the gas phase. J. Mass Spectrom. 51, 257–260 (2016)CrossRefGoogle Scholar
  34. 34.
    Fujihara, A., Maeda, N., Doan, T.N., Hayakawa, S.: Enantiomeric excess determination for monosaccharides using chiral transmission to cold gas-phase tryptophan in ultraviolet photodissociation. J. Am. Soc. Mass Spectrom. 28, 224–228 (2017)CrossRefGoogle Scholar
  35. 35.
    Fujihara, A., Maeda, N.: Quantitative chiral analysis of amino acids in solution using enantiomer-selective photodissociation of cold gas-phase tryptophan via chiral recognition. Anal. Chim. Acta. 979, 31–35 (2017)CrossRefGoogle Scholar
  36. 36.
    Fujihara, A., Inoue, H., Sogi, M., Tajiria, M., Wada, Y.: Chiral and molecular recognition through protonation between aromatic amino acids and tripeptides probed by collision-activated dissociation in the gas phase. Molecules. 23, 162 (2018)CrossRefGoogle Scholar
  37. 37.
    Fujihara, A., Okawa, Y.: Chiral and molecular recognition of monosaccharides by photoexcited tryptophan in cold gas-phase noncovalent complexes as a model for chemical evolution in interstellar molecular clouds. Anal. Chim. Acta. 410, 6279–6287 (2018)Google Scholar
  38. 38.
    Oki, N., Fujihara, A.: Molecular recognition and quantitative analysis of leucine and isoleucine using photodissociation of cold gas-phase noncovalent complexes. J. Mass Spectrom. 53, 595–597 (2018)CrossRefGoogle Scholar
  39. 39.
    Riggs, D.L., Hofmann, J., Hahm, H.S., Seeberger, P.H., Pagel, K., Julian, R.R.: Glycan isomer identification using ultraviolet photodissociation initiated radical chemistry. Anal. Chem. 90, 11581–11588 (2018)CrossRefGoogle Scholar
  40. 40.
    Gauthier, J.W., Trautman, T.R., Jacobson, D.B.: Sustained off-resonance irradiation for collision-activated dissociation involving Fourier-transform mass spectrometry collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta. 246, 211–225 (1991)CrossRefGoogle Scholar
  41. 41.
    Nanita, S.C., Cooks, R.G.: Serine octamers: cluster formation, reactions, and implications for biomolecule homochirality. Angew. Chem. Int. Ed. 45, 554–569 (2006)CrossRefGoogle Scholar
  42. 42.
    Bleiholder, C., Suhai, S., Paizs, B.: Revising the proton affinity scale of the naturally occurring α-amino acids. J. Am. Soc. Mass Spectrom. 17, 1275–1281 (2006)CrossRefGoogle Scholar
  43. 43.
    Tabarin, T., Antoine, R., Broyer, M., Dugourd, P.: Specific photodissociation of peptides with multi-stage mass spectrometry. Rapid Commun. Mass Spectrom. 19, 2883–2892 (2005)CrossRefGoogle Scholar
  44. 44.
    Sun, Q.Y., Nelson, H., Ly, T., Stoltz, B.M., Julian, R.R.: Side chain chemistry mediates backbone fragmentation in hydrogen deficient peptide radicals. J. Proteome Res. 8, 958–966 (2009)CrossRefGoogle Scholar
  45. 45.
    Halim, M.A., Girod, M., MacAleese, L., Lemoine, J., Antoine, R., Dugourd, P.: 213nm ultraviolet photodissociation on peptide anions: radical-directed fragmentation patterns. J. Am. Soc. Mass Spectrom. 27, 474–486 (2016)CrossRefGoogle Scholar
  46. 46.
    Nguyen, H.T.H., Shaffer, C.J., Turecek, F.: Probing peptide cation-radicals by near- UV photodissociation in the gas phase. Structure elucidation of histidine radical chromophores formed by near-UV photodissociation in the gas phase. Structure elucidation of histidine radical chromophores formed by electron transfer reduction. J. Phys. Chem. B. 119, 3948–3961 (2015)CrossRefGoogle Scholar
  47. 47.
    Herburger, A., van der Linde, C., Beyer, M.K.: Photodissociation spectroscopy of protonated leucine encephalin. Phys. Chem. Chem. Phys. 19, 10786–10795 (2017)CrossRefGoogle Scholar
  48. 48.
    Cooper, G.A., Hansen, C.S., Karsili, T.N.V., Ashfold, M.N.R.: Photofragment translational spectroscopy studies of H atom loss following ultraviolet photoexcitation of methimazole in the gas phase. J. Phys. Chem. A. 122, 9869–9878 (2018)CrossRefGoogle Scholar
  49. 49.
    Dedonder, C., Feraud, G., Jouvet, C.: In: Nielsen, S.B., Wyer, J.A. (eds.) Photophysics of Ionic Biochromophores, pp. 155–180. SpringerVerlag and Co.: Berlin and Heidelberg GmbH (2013)Google Scholar
  50. 50.
    Soorkia, S., Broquier, M., Gregoire, G.: Conformer- and mode-specific excited state lifetimes of cold protonated tyrosine ions. J. Phys. Chem. Lett. 5, 4349–4355 (2014)CrossRefGoogle Scholar
  51. 51.
    Feraud, G., Broquier, M., Dedonder-Lardeux, C., Jouvet, C., Gregoire, G., Soorkia, S.: Excited state dynamics of protonated phenylalanine and tyrosine: photo-induced reactions following electronic excitation. J. Phys. Chem. A. 119, 5914–5924 (2015)CrossRefGoogle Scholar
  52. 52.
    Gregoire, G., Jouvet, C., Dedonder, C., Sobolewski, A.L.: Ab initio study of the excited-state deactivation pathways of protonated tryptophan and tyrosine. J. Am. Chem. Soc. 129, 6223–6231 (2007)CrossRefGoogle Scholar
  53. 53.
    Kang, H., Jouvet, C., Dedonder-Lardeux, C., Martrenchard, S., Gregoire, G., Desfrancois, C., Schermann, J.P., Barat, M., Fayeton, J.A.: Ultrafast deactivation mechanisms of protonated aromatic amino acids following UV excitation. Phys. Chem. Chem. Phys. 7, 394–398 (2005)CrossRefGoogle Scholar
  54. 54.
    Nolting, D., Marian, C., Weinkauf, R.: Protonation effect on the electronic spectrum of tryptophan in the gas phase. Phys. Chem. Chem. Phys. 6, 2633–2640 (2004)CrossRefGoogle Scholar
  55. 55.
    Talbot, F.O., Tabarin, T., Antoine, R., Broyer, M., Dugourd, P.: Photodissociation spectroscopy of trapped protonated tryptophan. J. Chem. Phys. 122, 074310 (2005)CrossRefGoogle Scholar
  56. 56.
    Kang, H., Dedonder-Lardeux, C., Jouvet, C., Martrenchard, S., Gregoire, G., Desfrancois, C., Schermann, J.P., Barat, M., Fayeton, J.A.: Photo-induced dissociation of protonated tryptophan TrpH(+): a direct dissociation channel in the excited states controls the hydrogen atom loss. Phys. Chem. Chem. Phys. 6, 2628–2632 (2004)CrossRefGoogle Scholar
  57. 57.
    Boyarkin, O.V., Mercier, S.R., Kamariotis, A., Rizzo, T.R.: Electronic spectroscopy of cold protonated tryptophan and tyrosine. J. Am. Chem. Soc. 128, 2816–2817 (2006)CrossRefGoogle Scholar
  58. 58.
    Lepere, V., Lucas, B., Barat, M., Fayeton, J.A., Picard, Y.J., Jouvet, C., Çarcabal, P., Nielsen, I.B., Dedonder-Lardeux, C., Gregoire, G., Fujii, A.: Characterization of neutral fragments issued from the photodissociation of protonated tryptophane. Phys. Chem. Chem. Phys. 9, 5330–5334 (2007)CrossRefGoogle Scholar
  59. 59.
    Lucas, B., Barat, M., Fayeton, J.A., Perot, M., Jouvet, C., Gregoire, G., Brøndsted Nielsen, S.: Mechanisms of photoinduced C-alpha-C-beta bond breakage in protonated aromatic amino acids. J. Chem. Phys. 128, 164302 (2008)CrossRefGoogle Scholar
  60. 60.
    Gregoire, G., Lucas, B., Barat, M., Fayeton, J.A., Dedonder-Lardeux, C., Jouvet, C.: UV photoinduced dynamics in protonated aromatic amino acid. Eur. Phys. J. D. 51, 109–116 (2009)CrossRefGoogle Scholar
  61. 61.
    Myung, S., Fioroni, M., Julian, R.R., Koeniger, S.L., Baik, M., Clemmer, D.E.: Chirally directed formation of nanometer-scale proline clusters. J. Am. Chem. Soc. 128, 10833–10839 (2006)CrossRefGoogle Scholar
  62. 62.
    Atlasevich, N., Holliday, A.E., Valentine, S.J., Clemmer, D.E.: Chirality and packing in small proline clusters. J. Phys. Chem. B. 116, 11442–11446 (2012)CrossRefGoogle Scholar
  63. 63.
    Holliday, A.E., Atlasevich, N., Myung, S., Plasencia, M.D., Valentine, S.J., Clemmer, D.E.: Oscillations of chiral preference in proline clusters. J. Phys. Chem. A. 117, 1035–1041 (2013)CrossRefGoogle Scholar
  64. 64.
    Ma, L., Ren, J., Feng, R., Zhang, K., Kong, X.: Structural characterizations of protonated homodimers of amino acids: revealed by infrared multiple photon dissociation (IRMPD) spectroscopy and theoretical calculations. Chin. Chem. Lett. 29, 1333–1339 (2018)CrossRefGoogle Scholar
  65. 65.
    Kong, X.L., Lin, C., Infusini, G., Oh, H.B., Jiang, H.H., Breuker, K., Wu, C.C., Charkin, O.P., Chang, H.C., McLafferty, F.W.: Numerous isomers of serine octamer ions characterized by infrared photodissociation spectroscopy. ChemPhysChem. 10, 2603–2606 (2009)CrossRefGoogle Scholar
  66. 66.
    Tao, Y.Q., Julian, R.R.: Identification of amino acid epimerization and isomerization in crystallin proteins by tandem LC-MS. Anal. Chem. 86, 9733–9741 (2014)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Yingying Shi
    • 1
  • Min Zhou
    • 1
    • 2
  • Kailin Zhang
    • 1
    • 3
  • Lifu Ma
    • 3
  • Xianglei Kong
    • 1
    • 4
    Email author
  1. 1.State Key Laboratory and Institute of Elemento-Organic ChemistryNankai UniversityTianjinChina
  2. 2.Department of PhysicsAnhui Normal UniversityWuhuPeople’s Republic of China
  3. 3.School of Precision Instrument and Opto-Electronics EngineeringTianjin UniversityTianjinChina
  4. 4.Collaborative Innovation Center of Chemical Science and EngineeringNankai UniversityTianjinChina

Personalised recommendations