Advertisement

Characterizing Thermal Transitions of IgG with Mass Spectrometry

  • Christopher J. Brown
  • Daniel W. Woodall
  • Tarick J. El-Baba
  • David E. ClemmerEmail author
Research Article

Abstract

Variable temperature electrospray ionization (ESI) is coupled with mass spectrometry techniques in order to investigate structural transitions of monoclonal antibody immunoglobulin G (IgG) in a 100-mM ammonium acetate (pH 7.0) solution from 26 to 70 °C. At 26 °C, the mass spectrum for intact IgG shows six charge states + 22 to + 26. Upon increasing the solution temperature, the fraction of low-charge states decreases and new, higher-charge state ions are observed. Upon analysis, it appears that heating the solution aids in desolvation of the intact IgG precursor. Above ~ 50 °C, a cleavage event between the light and heavy chains is observed. An analysis of the kinetics for these processes at different temperatures yields transition state thermochemistry of ΔH = 95 ± 10 kJ mol−1, ΔS = 8 ± 1 J mol−1 K−1, and ΔG = 92 ± 11 kJ mol−1. The mechanism for light chain dissociation appears to involve disulfide bond scrambling that ultimately results in a non-native Cys199–Cys217 disulfide bond in the light chain product. Above ~ 70 °C, we are unable to produce a stable ESI signal. The loss of signal is ascribed to aggregation that is primarily associated with the remaining portion of the antibody after having lost the light chain.

Graphical Abstract

Keywords

Mass spectrometry variable temperature electrospray ionization antibody degradation dissociation kinetics 

Notes

Acknowledgements

This work was supported in part from funds from the National Institutes of Health (5R01GM117207-04 and 5R01GM121751-02).

Supplementary material

13361_2019_2292_MOESM1_ESM.docx (16.6 mb)
ESM 1 (DOCX 16952 kb)

References

  1. 1.
    Vidarsson, G., Dekkers, G., Rispens, T.: IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014)PubMedPubMedCentralGoogle Scholar
  2. 2.
    Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007)PubMedGoogle Scholar
  3. 3.
    Weiner, L.M., Surana, R., Wang, S.: Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 10, 317–327 (2010)PubMedPubMedCentralGoogle Scholar
  4. 4.
    Mellman, I., Coukos, G., Dranoff, G.: Cancer immunotherapy comes of age. Nature. 480, 480–489 (2011)PubMedPubMedCentralGoogle Scholar
  5. 5.
    Sharma, P., Allison, J.P.: The future of immune checkpoint therapy. Science. 348, 56–61 (2015)PubMedGoogle Scholar
  6. 6.
    Pardoll, D.M.: The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12, 1–13 (2012)Google Scholar
  7. 7.
    Lieberman, R.L., D’aquino, J.A., Ringe, D., Petsko, G.A.: Effects of pH and iminosugar pharmacological chaperones on lysosomal glycosidase structure and stability. Biochemistry. 48, 4816–4827 (2009)PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pérez, J.M.J., Renisio, J.G., Prompers, J.J., van Platerink, C.J., Cambillau, C., Darbon, H., Frenken, L.G.J.: Thermal unfolding of a llama antibody fragment: a two-state reversible process. Biochemistry. 40, 74–83 (2001)PubMedGoogle Scholar
  9. 9.
    El-Baba, T.J., Woodall, D.W., Raab, S.A., Fuller, D.R., Laganowsky, A., Russell, D.H., Clemmer, D.E.: Melting proteins: evidence for multiple stable structures upon thermal denaturation of native ubiquitin from ion mobility spectrometry-mass spectrometry measurements. J. Am. Chem. Soc. 139, 6306–6309 (2017)PubMedGoogle Scholar
  10. 10.
    Wang, G., Abzalimov, R.R., Kaltashov, I.A.: Direct monitoring of heat-stressed biopolymers with temperature-controlled electrospray ionization mass spectrometry. Anal. Chem. 83, 2870–2876 (2011)PubMedGoogle Scholar
  11. 11.
    Chorev, D.S., Baker, L.A., Wu, D., Beilsten-Edmands, V., Rouse, S.L., Zeev-Ben-Mordehai, T., Jiko, C., Samsudin, F., Gerle, C., Khalid, S., Stewart, A.G., Matthews, S.J., Grünewald, K., Robinson, C.V.: Protein assemblies ejected directly from native membranes yield complexes for mass spectrometry. Science. 362, 829–834 (2018)PubMedPubMedCentralGoogle Scholar
  12. 12.
    Liko, I., Degiacomi, M.T., Mohammed, S., Yoshikawa, S., Schmidt, C., Robinson, C.V.: Dimer interface of bovine cytochrome c oxidase is influenced by local posttranslational modifications and lipid binding. Proc. Natl. Acad. Sci. 113, 8230–8235 (2016)PubMedGoogle Scholar
  13. 13.
    Zhang, J., Loo, R.R.O., Loo, J.A.: Structural characterization of a thrombin-aptamer complex by high resolution native top-down mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1815–1822 (2017)PubMedPubMedCentralGoogle Scholar
  14. 14.
    Pinkse, M.W.H., Maier, C.S., Kim, J.-I., Oh, B.-H., Heck, A.J.R.: Macromolecular assembly of Helicobacter pylori urease investigated by mass spectrometry. J. Mass Spectrom. 38, 315–320 (2003)PubMedGoogle Scholar
  15. 15.
    Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods. 5, 927–933 (2008)PubMedGoogle Scholar
  16. 16.
    Susa, A.C., Xia, Z., Tang, H.Y.H., Tainer, J.A., Williams, E.R.: Charging of proteins in native mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1–9 (2017)Google Scholar
  17. 17.
    Chung, E.W., Henriques, D.A., Renzoni, D., Morton, C.J., Mulhern, T.D., Pitkeathly, M.C., Ladbury, J.E., Robinson, C.V.: Probing the nature of interactions in SH2 binding interfaces - evidence from electrospray ionization mass spectrometry. Protein Sci. 8, 1962–1970 (1999)PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hudgins, R.R., Woenckhaus, J., Jarrold, M.F.: High resolution ion mobility measurements for gas phase proteins: correlation between solution phase and gas phase conformations. Int. J. Mass Spectrom. 165, 497–507 (1997)Google Scholar
  19. 19.
    Winger, B.E., Hofstadler, S.A., Bruce, J.E., Udseth, H.R., Smith, R.D.: High-resolution accurate mass measurements of biomolecules using a new electrospray-ionization ion-cyclotron resonance mass-spectrometer. J. Am. Soc. Mass Spectrom. 4, 566–577 (1993)PubMedGoogle Scholar
  20. 20.
    Li, J., Taraszka, J.A., Counterman, A.E., Clemmer, D.E.: Influence of solvent composition and capillary temperature on the conformations of electrosprayed ions: unfolding of compact ubiquitin conformers from pseudonative and denatured solutions. Int. J. Mass Spectrom. 185, 37–47 (1999)Google Scholar
  21. 21.
    Wales, T.E., Engen, J.R.: Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 25, 158–170 (2005)Google Scholar
  22. 22.
    Houde, D., Arndt, J., Domeier, W., Berkowitz, S., Engen, J.R.: Characterization of IgG1 conformation and conformational dynamics by hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 81, 2644–2651 (2009)PubMedPubMedCentralGoogle Scholar
  23. 23.
    Houde, D., Peng, Y., Berkowitz, S.A., Engen, J.R.: Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol. Cell. Proteomics. 9, 1716–1728 (2010)PubMedPubMedCentralGoogle Scholar
  24. 24.
    Katta, V., Chait, B.T.: Hydrogen/deuterium exchange electrospray ionization mass spectrometry: a method for probing protein conformational changes in solution. J. Am. Chem. Soc. 115, 6317–6321 (1993)Google Scholar
  25. 25.
    Konermann, L., Pan, J., Liu, Y.-H.: Hydrogen exchange mass spectrometry for studying protein structure and dynamics. Chem. Soc. Rev. 40, 1224–1234 (2011)PubMedGoogle Scholar
  26. 26.
    Chalmers, M.J., Busby, S.A., Pascal, B.D., He, Y., Hendrickson, C.L., Marshall, A.G., Griffin, P.R.: Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal. Chem. 78, 1005–1014 (2006)PubMedGoogle Scholar
  27. 27.
    Li, K.S., Shi, L., Gross, M.L.: Mass spectrometry-based fast photochemical oxidation of proteins (FPOP) for higher order structure characterization. Acc. Chem. Res. 51, 736–744 (2018)PubMedPubMedCentralGoogle Scholar
  28. 28.
    Jones, L.M., Sperry, B.J., Carroll, A.J., Gross, M.L.: Fast photochemical oxidation of proteins for epitope mapping. Anal. Chem. 83, 7657–7661 (2011)PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gau, B.C., Sharp, J.S., Rempel, D.L., Gross, M.L.: Fast photochemical oxidation of protein footprints faster than protein unfolding. Anal. Chem. 81, 6563–6571 (2009)PubMedPubMedCentralGoogle Scholar
  30. 30.
    Chea, E.E., Jones, L.M.: Modifications generated by fast photochemical oxidation of proteins reflect the native conformations of proteins. Protein Sci. 27, 1047–1056 (2018)PubMedPubMedCentralGoogle Scholar
  31. 31.
    Herzog, F., Kahraman, A., Boehringer, D., Mak, R., Bracher, A., Walzthoeni, T., Leitner, A., Beck, M., Hartl, F.-U., Ban, N., Malmstroem, L., Aebersold, R.: Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science. 337, 1348–1352 (2012)PubMedGoogle Scholar
  32. 32.
    Leitner, A., Walzthoeni, T., Kahraman, A., Herzog, F., Rinner, O., Beck, M., Aebersold, R.: Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol. Cell. Proteomics. 9, 1634–1649 (2010)PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lauber, M.A., Reilly, J.P.: Novel amidinating cross-linker for facilitating analyses of protein structures and interactions. Anal. Chem. 82, 7736–7743 (2010)PubMedGoogle Scholar
  34. 34.
    Ji, J., Chakraborty, A., Geng, M., Zhang, X., Amini, A., Bina, M., Regnier, F.: Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J. Chromatogr. B Biomed. Sci. Appl. 745, 197–210 (2000)PubMedGoogle Scholar
  35. 35.
    Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R.: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999)PubMedGoogle Scholar
  36. 36.
    Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)PubMedPubMedCentralGoogle Scholar
  37. 37.
    Shi, H., Pierson, N.A., Valentine, S.J., Clemmer, D.E.: Conformation types of ubiquitin [M+8H] 8+ions from water:methanol solutions: evidence for the N and a states in aqueous solution. J. Phys. Chem. B. 116, 3344–3352 (2012)PubMedPubMedCentralGoogle Scholar
  38. 38.
    Shi, H., Clemmer, D.E.: Evidence for two new solution states of ubiquitin by IMS–MS analysis. J. Phys. Chem. B. 118, 3498–3506 (2014)PubMedPubMedCentralGoogle Scholar
  39. 39.
    Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry. J. Am. Chem. Soc. 136, 12702–12711 (2014)PubMedGoogle Scholar
  40. 40.
    Shi, H., Atlasevich, N., Merenbloom, S.I., Clemmer, D.E.: Solution dependence of the collisional activation of ubiquitin [M + 7H]7+ ions. J. Am. Soc. Mass Spectrom. 25, 2000–2008 (2014)PubMedPubMedCentralGoogle Scholar
  41. 41.
    Shi, L., Holliday, A.E., Glover, M.S., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Ion mobility-mass spectrometry reveals the energetics of intermediates that guide polyproline folding. J. Am. Soc. Mass Spectrom. 27, 22–30 (2015)PubMedPubMedCentralGoogle Scholar
  42. 42.
    Clemmer, D.E., Russell, D.H., Williams, E.R.: Characterizing the conformationome: toward a structural understanding of the proteome. Acc. Chem. Res. 50, 556–560 (2017)PubMedGoogle Scholar
  43. 43.
    Fuller, D.R., Conant, C.R., El-Baba, T.J., Brown, C.J., Woodall, D.W., Russell, D.H., Clemmer, D.E.: Conformationally regulated peptide bond cleavage in bradykinin. J. Am. Chem. Soc. 140, 9357–9360 (2018)PubMedPubMedCentralGoogle Scholar
  44. 44.
    Bernstein, S.L., Wyttenbach, T., Baumketner, A., Shea, J.-E., Bitan, G., Teplow, D.B., Bowers, M.T.: Amyloid β-protein: monomer structure and early aggregation states of Aβ42 and its Pro-19 alloform. J. Am. Chem. Soc. 127, 2075–2084 (2005)PubMedGoogle Scholar
  45. 45.
    Bernstein, S.L., Dupuis, N.F., Lazo, N.D., Wyttenbach, T., Condron, M.M., Bitan, G., Teplow, D.B., Shea, J.-E., Ruotolo, B.T., Robinson, C.V., Bowers, M.T.: Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1, 326–331 (2009)PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tian, Y., Han, L., Buckner, A.C., Ruotolo, B.T.: Collision induced unfolding of intact antibodies: rapid characterization of disulfide bonding patterns, glycosylation, and structures. Anal. Chem. 87, 151015204733009–151015204711515 (2015)Google Scholar
  47. 47.
    Tian, Y., Ruotolo, B.T.: Collision induced unfolding detects subtle differences in intact antibody glycoforms and associated fragments. Int. J. Mass Spectrom. 425, 1–9 (2018)Google Scholar
  48. 48.
    Dong, S., Wagner, N.D., Russell, D.H.: Collision-induced unfolding of partially metalated metallothionein-2A: tracking unfolding reactions of gas-phase ions. Anal. Chem. 90, 11856–11862 (2018)PubMedPubMedCentralGoogle Scholar
  49. 49.
    Martin, S.A., Biemann, K.: A comparison of keV atom bombardment mass spectra of peptides obtained with a two-sector mass spectrometer with those from a four-sector tandem mass spectrometer. Int. J. Mass Spectrom. Ion Process. 78, 213–228 (1987)Google Scholar
  50. 50.
    Johnson, R.S., Martin, S.A., Biemann, K.: Collision-induced fragmentation of (M + H)+ ions of peptides. Side chain specific sequence ions. Int. J. Mass Spectrom. Ion Process. 86, 137–154 (1988)Google Scholar
  51. 51.
    Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS−IMS analogue of MS−MS. Anal. Chem. 78, 4161–4174 (2006)PubMedGoogle Scholar
  52. 52.
    Zhou, M., Jones, C.M., Wysocki, V.H.: Dissecting the large noncovalent protein complex GroEL with surface-induced dissociation and ion mobility-mass spectrometry. Anal. Chem. 85, 8262–8267 (2013)PubMedGoogle Scholar
  53. 53.
    Quintyn, R.S., Harvey, S.R., Wysocki, V.H.: Illustration of SID-IM-SID (surface-induced dissociation-ion mobility-SID) mass spectrometry: homo and hetero model protein complexes. Analyst. 140, 7012–7019 (2015)PubMedGoogle Scholar
  54. 54.
    Dongré, A.R., Somogyi, A., Wysocki, V.H.: Surface-induced dissociation: an effective tool to probe structure, energetics and fragmentation mechanisms of protonated peptides. J. Mass Spectrom. 31, 339–350 (1996)PubMedGoogle Scholar
  55. 55.
    Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W.: Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal. Chem. 66, 2809–2815 (2002)Google Scholar
  56. 56.
    Shaffer, C.J., Marek, A., Pepin, R., Slovakova, K., Turecek, F.: Combining UV photodissociation with electron transfer for peptide structure analysis. J. Mass Spectrom. 50, 470–475 (2015)PubMedGoogle Scholar
  57. 57.
    Wilson, J.J., Brodbelt, J.S.: MS/MS simplification by 355 nm ultraviolet photodissociation of chromophore-derivatized peptides in a quadrupole ion trap. Anal. Chem. 79, 7883–7892 (2007)PubMedGoogle Scholar
  58. 58.
    Lee, S., Valentine, S.J., Reilly, J.P., Clemmer, D.E.: Analyzing a mixture of disaccharides by IMS-VUVPD-MS. Int. J. Mass Spectrom. 309, 161–167 (2012)PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ewing, M.A., Glover, M.S., Clemmer, D.E.: Hybrid ion mobility and mass spectrometry as a separation tool. J. Chromatogr. A. 1439, 1–23 (2015)Google Scholar
  60. 60.
    Liu, F.C., Ridgeway, M.E., Park, M.A., Bleiholder, C.: Tandem trapped ion mobility spectrometry. Analyst. 143, 2249–2258 (2018)PubMedGoogle Scholar
  61. 61.
    Valentine, S.J., Koeniger, S.L., Clemmer, D.E.: A split-field drift tube for separation and efficient fragmentation of biomolecular ions. Anal. Chem. 75, 6202–6208 (2003)PubMedGoogle Scholar
  62. 62.
    May, J.C., Russell, D.H.: A mass-selective variable-temperature drift tube ion mobility-mass spectrometer for temperature dependent ion mobility studies. J. Am. Soc. Mass Spectrom. 22, 1134–1145 (2011)PubMedGoogle Scholar
  63. 63.
    Donohoe, G.C., Maleki, H., Arndt, J.R., Khakinejad, M., Yi, J., McBride, C., Nurkiewicz, T.R., Valentine, S.J.: A new ion mobility-linear ion trap instrument for complex mixture analysis. Anal. Chem. 86, 8121–8128 (2014)PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fernandez-Lima, F., Kaplan, D.A., Suetering, J., Park, M.A.: Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14, 93–98 (2011)Google Scholar
  65. 65.
    Shvartsburg, A., Anderson, A.A., Smith, G.D.R.: Pushing the frontier of high-definition ion mobility spectrometry using FAIMS. Mass Spectrom. (Tokyo). 2, S0011 (2013)Google Scholar
  66. 66.
    Wyttenbach, T., Bushnell, J.E., Bowers, M.T.: Salt bridge structures in the absence of solvent? The case for the oligoglycines. J. Am. Chem. Soc. 120, 5098–5103 (1998)Google Scholar
  67. 67.
    Ogorzalek Loo, R.R., Winger, B.E., Smith, R.D.: Proton transfer reaction studies of multiply charged proteins in a high mass-to-charge ratio quadrupole mass spectrometer. J. Am. Soc. Mass Spectrom. 5, 1064–1071 (1994)PubMedGoogle Scholar
  68. 68.
    Valentine, S.J., Counterman, A.E., Clemmer, D.E.: Conformer-dependent proton-transfer reactions of ubiquitin ions. J. Am. Soc. Mass Spectrom. 8, 954–961 (1997)Google Scholar
  69. 69.
    He, F., Ramirez, J., Lebrilla, C.B.: Evidence for an intermolecular proton-transfer reaction induced by collision in gas-phase noncovalently bound complexes. J. Am. Chem. Soc. 121, 4726–4727 (1999)Google Scholar
  70. 70.
    Gross, D.S., Schnier, P.D., Rodriguez-Cruz, S.E., Fagerquist, C.K., Williams, E.R.: Conformations and folding of lysozyme ions in vacuo. Proc. Natl. Acad. Sci. 93, 3143–3148 (1996)PubMedGoogle Scholar
  71. 71.
    McLafferty, F.W., Guan, Z., Haupts, U., Wood, T.D., Kelleher, N.L.: Gaseous conformational structures of cytochrome c. J. Am. Chem. Soc. 120, 4732–4740 (1998)Google Scholar
  72. 72.
    Bohrer, B.C., Atlasevich, N., Clemmer, D.E.: Transitions between elongated conformations of ubiquitin [M+11H]11+ enhance hydrogen/deuterium exchange. J. Phys. Chem. B. 115, 4509–4515 (2011)PubMedPubMedCentralGoogle Scholar
  73. 73.
    Valentine, S.J., Clemmer, D.E.: H/D exchange levels of shape-resolved cytochrome c conformers in the gas phase. J. Am. Chem. Soc. 119, 3558–3566 (1997)Google Scholar
  74. 74.
    Valentine, S.J., Anderson, J.G., Ellington, A.D., Clemmer, D.E.: Disulfide-intact and -reduced lysozyme in the gas phase: conformations and pathways of folding and unfolding. J. Phys. Chem. B. 101, 3891–3900 (1997)Google Scholar
  75. 75.
    Li, H., Nguyen, H.H., Loo, R.R.O., Campuzano, I.D.G., Loo, J.A.: An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 10, 139–148 (2018)PubMedPubMedCentralGoogle Scholar
  76. 76.
    Loo, R.R.O., Loo, J.A.: Salt bridge rearrangement (SaBRe) explains the dissociation behavior of noncovalent complexes. J. Am. Soc. Mass Spectrom. 27, 975–990 (2016)PubMedPubMedCentralGoogle Scholar
  77. 77.
    Hogan, J.M., Pitteri, S.J., Chrisman, P.A., McLuckey, S.A.: Complementary structural information from a tryptic N-linked glycopeptide via electron transfer ion/ion reactions and collision-induced dissociation. J. Proteome Res. 4, 628–632 (2005)PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rijs, A.M., Oomens, J.: IR spectroscopic techniques to study isolated biomolecules. Top. Curr. Chem. 364, 1–42 (2015)PubMedGoogle Scholar
  79. 79.
    Forbes, M.W., Bush, M.F., Polfer, N.C., Oomens, J., Dunbar, R.C., Williams, E.R., Jockusch, R.A.: Infrared spectroscopy of arginine cation complexes: direct observation of gas-phase zwitterions. J. Phys. Chem. A. 111, 11759–11770 (2007)PubMedGoogle Scholar
  80. 80.
    Ben Faleh, A., Warnke, S., Rizzo, T.R.: Combining ultrahigh-resolution ion-mobility spectrometry with cryogenic IR spectroscopy for the analysis of glycan mixtures. Anal. Chem. 91, 4876–4882 (2019)PubMedGoogle Scholar
  81. 81.
    Banyasz, A., Douki, T., Improta, R., Gustavsson, T., Onidas, D., Vayá, I., Perron, M., Markovitsi, D.: Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study. J. Am. Chem. Soc. 134, 14834–14845 (2012)PubMedGoogle Scholar
  82. 82.
    El-Baba, T.J., Fuller, D.R., Woodall, D.W., Raab, S.A., Conant, C.R., Dilger, J.M., Toker, Y., Williams, E.R., Russell, D.H., Clemmer, D.E.: Melting proteins confined in nanodroplets with 10.6 μm light provides clues about early steps of denaturation. Chem. Commun. 54, 3270–3273 (2018)Google Scholar
  83. 83.
    Ruotolo, B.T., Benesch, J.L.P., Sandercock, A.M., Hyung, S.-J., Robinson, C.V.: Ion mobility–mass spectrometry analysis of large protein complexes. Nat. Protoc. 3, 1139–1152 (2008)PubMedGoogle Scholar
  84. 84.
    Sobott, F., Hernández, H., McCammon, M.G., Tito, M.A., Robinson, A.C.V.: A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal. Chem. 74, 1402–1407 (2002)PubMedGoogle Scholar
  85. 85.
    Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K.A., Benesch, J.L.P., Robinson, C.V.: Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015)PubMedPubMedCentralGoogle Scholar
  86. 86.
    Chennamsetty, N., Voynov, V., Kayser, V., Helk, B., Trout, B.L.: Design of therapeutic proteins with enhanced stability. Proc. Natl. Acad. Sci. 106, 11937–11942 (2009)PubMedGoogle Scholar
  87. 87.
    Vermeer, A.W.P., Norde, W.: The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys. J. 78, 394–404 (2000)PubMedPubMedCentralGoogle Scholar
  88. 88.
    El-Baba, T.J., Clemmer, D.E.: Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI-IMS-MS. Int. J. Mass Spectrom. 443, 93–100 (2019)Google Scholar
  89. 89.
    Brader, M.L., Estey, T., Bai, S., Alston, R.W., Lucas, K.K., Lantz, S., Landsman, P., Maloney, K.M.: Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol. Pharm. 12, 1005–1017 (2015)PubMedGoogle Scholar
  90. 90.
    Wang, G., Bondarenko, P.V., Kaltashov, I.A.: Multi-step conformational transitions in heat-treated protein therapeutics can be monitored in real time with temperature-controlled electrospray ionization mass spectrometry. Analyst. 143, 670–677 (2018)PubMedGoogle Scholar
  91. 91.
    Brody, T.: Multistep denaturation and hierarchy of disulfide bond cleavage of a monoclonal antibody. Anal. Biochem. 247, 247–256 (1997)PubMedGoogle Scholar
  92. 92.
    Kamerzell, T.J., Li, M., Arora, S., Ji, J.A., Wang, Y.J.: The relative rate of immunoglobulin gamma 1 fragmentation. J. Pharm. Sci. 100, 1341–1349 (2011)PubMedGoogle Scholar
  93. 93.
    Lakbub, J.C., Shipman, J.T., Desaire, H.: Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal. Bioanal. Chem. 410, 2467–2484 (2018)PubMedGoogle Scholar
  94. 94.
    Wang, Y., Lu, Q., Wu, S.L., Karger, B.L., Hancock, W.S.: Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Anal. Chem. 83, 3133–3140 (2011)PubMedPubMedCentralGoogle Scholar
  95. 95.
    Wang, X., Kumar, S., Singh, S.K.: Disulfide scrambling in IgG2 monoclonal antibodies: insights from molecular dynamics simulations. Pharm. Res. 28, 3128–3144 (2011)PubMedGoogle Scholar
  96. 96.
    Salas-Solano, O., Tomlinson, B., Du, S., Parker, M., Strahan, A., Ma, S.: Optimization and validation of a quantitative capillary electrophoresis sodium dodecyl sulfate method for quality control and stability monitoring of monoclonal antibodies. Anal. Chem. 78, 6583–6594 (2006)PubMedGoogle Scholar
  97. 97.
    Arosio, P., Rima, S., Morbidelli, M.: Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: from oligomers to larger aggregates. Pharm. Res. 30, 641–654 (2013)PubMedGoogle Scholar
  98. 98.
    Roberts, C.J.: Therapeutic protein aggregation: mechanisms, design, and control. Trends Biotechnol. 32, 372–380 (2014)PubMedPubMedCentralGoogle Scholar
  99. 99.
    Vlasak, J., Ionescu, R.: Fragmentation of monoclonal antibodies. mAbs. 3, 253–263 (2011)PubMedPubMedCentralGoogle Scholar
  100. 100.
    Moore, J.M., Patapoff, T.W., Cromwell, M.E.: Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry. 38, 13960–13967 (1999)PubMedGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA

Personalised recommendations