Validation of Calibration Parameters for Trapped Ion Mobility Spectrometry

  • Cameron N. Naylor
  • Tobias Reinecke
  • Mark E. Ridgeway
  • Melvin A. Park
  • Brian H. ClowersEmail author
Research Article


Using contemporary theory for ion mobility spectrometry (IMS), gas-phase ion mobilities within a trapped ion mobility-mass spectrometer (TIMS) are not easily deduced using first principle equations due to non-linear pressure changes and consequently variations in E/N. It is for this reason that prior literature values have traditionally been used for TIMS calibration. Additionally, given that verified mobility standards currently do not exist and the that the exact conditions used to measure reported literature values may not always represent the environment within the TIMS, a direct approach to validating the behavior of the TIMS system is warranted. A calibration procedure is presented where an ambient pressure, ambient temperature, two-gate, printed circuit board drift-tube IMS (PCBIMS) is coupled to the front of a TIMS allowing reduced mobilities to be directly measured on the same instrument as the TIMS. These measured mobilities were used to evaluate the TIMS calibration procedure which correlates reduced mobility and TIMS elution voltages with literature values. When using the measured PCBIMS-reduced mobilities of tetraalkyl ammonium salts and tune mix for TIMS calibration of the alkyltrimethyl ammonium salts, the percent error is less than 1% as compared with using the reported literature K0 values where the percent error approaches 5%. This method provides a way to obtain accurate reference mobilities for ion mobility techniques that require a calibration step (i.e., TIMS and TWAVE).


Trapped ion mobility spectrometry Drift-tube ion mobility spectrometry Ion mobility calibration Mass spectrometry 



The authors would like to thank the Department of Chemistry of the Washington State University and Bruker Daltonics for their support. TR would like to acknowledge support from the NSF under award CHE-1506672 and support for CNN was provided by DTRA Basic Research Program (Grant No. HDTRA1-14-1-0023).

Supplementary material

13361_2019_2289_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1895 kb)


  1. 1.
    Revercomb, H.E., Mason, E.A.: Theory of plasma chromatography/gaseous electrophoresis- a review. Anal. Chem. 47, 970–983 (1975)CrossRefGoogle Scholar
  2. 2.
    Spangler, G.E., Collins, C.I.: Peak shape analysis and plate theory for plasma chromatography. Anal. Chem. 47, 403–407 (1975)CrossRefGoogle Scholar
  3. 3.
    Tabrizchi, M.: Temperature corrections for ion mobility spectrometry. Appl. Spectrosc. 55, 1653–1659 (2001)CrossRefGoogle Scholar
  4. 4.
    Kim, S.H., Betty, K.R., Karasek, F.W.: Mobility behavior and composition of hydrated positive reactant ions in plasma chromatography with nitrogen carrier gas. Anal. Chem. 50, 2006–2012 (1978)CrossRefGoogle Scholar
  5. 5.
    Eiceman, G.A., Nazarov, E.G., Stone, J.A.: Chemical standards in ion mobility spectrometry. Anal. Chim. Acta. 493, 185–194 (2003)CrossRefGoogle Scholar
  6. 6.
    Eiceman, G.A., Karpas, Z., Hill, H.H.J.: Ion Mobility Spectrometry. Taylor & Francis Group, Boca Raton, FL (2014)Google Scholar
  7. 7.
    McKnight, L.G., McAfee, K.B., Sipler, D.P.: Low-field drift velocities and reactions of nitrogen ions in nitrogen. Phys. Rev. 164, 62–70 (1967)CrossRefGoogle Scholar
  8. 8.
    Caygill, J.S., Davis, F., Higson, S.P.J.: Current trends in explosive detection techniques. Talanta. 88, 14–29 (2012)PubMedCrossRefGoogle Scholar
  9. 9.
    Ewing, R.G., Atkinson, D.A., Eiceman, G.A., Ewing, G.J.: A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta. 54, 515–529 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    Uetrecht, C., Rose, R.J., van Duijn, E., Lorenzen, K., Heck, A.J.R.: Ion mobility mass spectrometry of proteins and protein assemblies. Chem. Soc. Rev. 39, 1633–1655 (2010)PubMedCrossRefGoogle Scholar
  11. 11.
    McLean, J.A., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Ion mobility-mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240, 301–315 (2005)CrossRefGoogle Scholar
  12. 12.
    Fernandez-Lima, F., Kaplan, D.A., Suetering, J., Park, M.A.: Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion Mobil. Spectrom. 14, 93–98 (2011)CrossRefGoogle Scholar
  13. 13.
    Fernandez-Lima, F.A., Kaplan, D.A., Park, M.A.: Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev. Sci. Instrum. 82, (2011).
  14. 14.
    Hernandez, D.R., DeBord, J.D., Ridgeway, M.E., Kaplan, D.A., Park, M.A., Fernandez-Lima, F.: Ion dynamics in a trapped ion mobility spectrometer. Analyst. 139, 1913–1921 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Silveira, J.A., Ridgeway, M.E., Park, M.A.: High resolution trapped ion mobility spectrometery of peptides. Anal. Chem. 86, 5624–5627 (2014)PubMedCrossRefGoogle Scholar
  16. 16.
    Michelmann, K., Silveira, J.A., Ridgeway, M.E., Park, M.A.: Fundamentals of trapped ion mobility spectrometry. J. Am. Soc. Mass Spectrom. 26, 14–24 (2014)PubMedCrossRefGoogle Scholar
  17. 17.
    Silveira, J.A., Michelmann, K., Ridgeway, M.E., Park, M.A.: Fundamentals of trapped ion mobility spectrometry part II: fluid dynamics. J. Am. Soc. Mass Spectrom. 27, 585–595 (2016)PubMedCrossRefGoogle Scholar
  18. 18.
    Ridgeway, M.E., Lubeck, M., Jordens, J., Mann, M., Park, M.A.: Trapped ion mobility spectrometry: a short review. Int. J. Mass Spectrom. 425, 22–35 (2018)CrossRefGoogle Scholar
  19. 19.
    Silveira, J.A., Ridgeway, M.E., Laukien, F.H., Mann, M., Park, M.A.: Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry. Int. J. Mass Spectrom. 413, 168–175 (2017)CrossRefGoogle Scholar
  20. 20.
    Meier, F., Beck, S., Grassl, N., Lubeck, M., Park, M.A., Raether, O., Mann, M.: Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015)PubMedCrossRefGoogle Scholar
  21. 21.
    McKenzie-Coe, A., DeBord, J.D., Ridgeway, M., Park, M., Eiceman, G., Fernandez-Lima, F.: Lifetimes and stabilities of familiar explosive molecular adduct complexes during ion mobility measurements. Analyst. 140, 5692–5699 (2015)PubMedCrossRefGoogle Scholar
  22. 22.
    Benigni, P., Bravo, C., Quirke, M.J.E., DeBord, J.D., Mebel, A.M., Fernandez-Lima, F.: Analysis of geologically relevant metal porphyrins using trapped ion mobility spectrometry−mass spectrometry and theoretical calculations. Energy and Fuels. 30, 10341–10347 (2016)CrossRefGoogle Scholar
  23. 23.
    Jeanne Dit Fouque, K., Garabedian, A., Porter, J., Baird, M., Pang, X., Williams, T.D., Li, L., Shvartsburg, A., Fernandez-Lima, F.: Fast and effective ion mobility - mass spectrometry separation of D-amino acid containing peptides. Anal. Chem. acs.analchem.7b03401 (2017)Google Scholar
  24. 24.
    Liu, F.C., Kirk, S.R., Bleiholder, C.: On the structural denaturation of biological analytes in trapped ion mobility spectrometry – mass spectrometry. Analyst. 141, 3722–3730 (2016)PubMedCrossRefGoogle Scholar
  25. 25.
    Chai, M., Young, M.N., Liu, F.C., Bleiholder, C.: A transferable, sample-independent calibration procedure for trapped ion mobility spectrometry (TIMS). Anal. Chem. (2018).
  26. 26.
    Stow, S.M., Causon, T.J., Zheng, X., Kurulugama, R.T., Mairinger, T., May, J.C., Rennie, E.E., Baker, E.S., Smith, R.D., McLean, J.A., Hann, S., Fjeldsted, J.C.: An interlaboratory evaluation of drift tube ion mobility-mass spectrometry collision cross section measurements. Anal. Chem. 89, 9048–9055 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ewing, R.G., Eiceman, G.A., Harden, C.S., Stone, J.A.: The kinetics of the decompositions of the proton bound dimers of 1,4-dimethylpyridine and dimethyl methylphosphonate from atmospheric pressure ion mobility spectra. Int. J. Mass Spectrom. 255-256, 76–85 (2006)CrossRefGoogle Scholar
  28. 28.
    Karpas, Z., Berant, Z., Shahal, O.: Effect of temperature on the mobility of ions. J. Am. Chem. Soc. 111, 6015–6018 (1989)CrossRefGoogle Scholar
  29. 29.
    Abedi, A., Sattar, L., Gharibi, M., Viehland, L.A.: Investigation of temperature, electric field and drift-gas composition effects on the mobility of NH4+ions in He, Ar, N2, and CO2. Int. J. Mass Spectrom. 370, 101–106 (2014)CrossRefGoogle Scholar
  30. 30.
    Demoranville, L.T., Houssiau, L., Gillen, G.: Behavior and evaluation of tetraalkylammonium bromides as instrument test materials in thermal desorption ion mobility spectrometers. Anal. Chem. 85, 2652–2658 (2013)PubMedCrossRefGoogle Scholar
  31. 31.
    Ude, S., De La Mora, J.F.: Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium halides. J. Aerosol Sci. 36, 1224–1237 (2005)CrossRefGoogle Scholar
  32. 32.
    Viidanoja, J., Sysoev, A., Adamov, A., Kotiaho, T.: Tetraalkylammonium halides as chemical standards for positive electrospray ionization with ion mobility spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 19, 3051–3055 (2005)PubMedCrossRefGoogle Scholar
  33. 33.
    May, J.C., Goodwin, C.R., Lareau, N.M., Leaptrot, K.L., Morris, C.B., Kurulugama, R.T., Mordehai, A., Klein, C., Barry, W., Darland, E., Overney, G., Imatani, K., Stafford, G.C., Fjeldsted, J.C., McLean, J.A.: Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 86, 2107–2116 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Haler, J.R.N., Kune, C., Massonnet, P., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., De Pauw, E.: Comprehensive ion mobility calibration: poly(ethylene oxide) polymer calibrants and general strategies. Anal. Chem. 89, 12076–12086 (2017)PubMedCrossRefGoogle Scholar
  35. 35.
    Gidden, J., Wyttenbach, T., Jackson, A.T., Scrivens, J.H., Bowers, M.T.: Gas-phase conformations of synthetic polymers: poly(ethylene glycol), poly(propylene glycol), and poly(tetramethylene glycol). J. Am. Chem. Soc. 122, 4692–4699 (2000)CrossRefGoogle Scholar
  36. 36.
    Wyttenbach, T., Pierson, N.A., Clemmer, D.E., Bowers, M.T.: Ion mobility analysis of molecular dynamics. Annu. Rev. Phys. Chem. 65, 175–196 (2014)PubMedCrossRefGoogle Scholar
  37. 37.
    Shumate, C., St.Louis, R.H., Hill, H.H., Jr.: Table of reduced mobility ion mobility spectrometry values from ambient. J. Chromatogr. A. 373, 141–173 (1986)Google Scholar
  38. 38.
    May, J.C., Morris, C.B., McLean, J.A.: Ion mobility collision cross section compendium. Anal. Chem. 89, 1032–1044 (2017)PubMedCrossRefGoogle Scholar
  39. 39.
    Li, H., Bendiak, B., Siems, W.F., Gang, D.R., Hill Jr., H.H.: Carbohydrate structure characterization by tandem ion mobility mass spectrometry (IMMS)2. Anal. Chem. 85, 2760–2769 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Reinecke, T., Clowers, B.H.: Implementation of a flexible, open-source platform for ion mobility spectrometry. HardwareX. 4, (2018). doi:
  41. 41.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A., Zimmermann, S.: High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Anal. Chem. 86, 7023–7032 (2014)PubMedCrossRefGoogle Scholar
  42. 42.
    Reinecke, T., Kirk, A.T., Ahrens, A., Raddatz, C.R., Thoben, C., Zimmermann, S.: A compact high resolution electrospray ionization ion mobility spectrometer. Talanta. 150, 1–6 (2016)PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia, L., Saba, C., Manocchio, G., Anderson, G.A., Davis, E., Clowers, B.H.: An open source ion gate pulser for ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 20, 87–93 (2017)CrossRefGoogle Scholar
  44. 44.
    Hauck, B.C., Siems, W.F., Harden, C.S., McHugh, V.M., Hill, H.H.: Determination of E/N influence on K 0 values within the low field region of ion mobility spectrometry. J. Phys. Chem. A. 1, acs.jpca.6b12331 (2017)Google Scholar
  45. 45.
    Reinecke, T.: MP 397 Development of a High Performance, Modular Ion Mobility Spectrometer using Printed Circuit Boards. 66th ASMS Conference on Mass Spectrometry and Allied Topics. , San Diego Convention Center, San Diego, CA, USA (2018)Google Scholar
  46. 46.
    Clowers, B.H., Hill, H.H.: Mass analysis of mobility-selected ion populations using dual gate, ion mobility, quadrupole ion trap mass spectrometry. Anal. Chem. 77, 5877–5885 (2005)PubMedCrossRefGoogle Scholar
  47. 47.
    Morrison, K.A., Siems, W.F., Clowers, B.H.: Augmenting ion trap mass spectrometers using a frequency modulated drift tube ion mobility spectrometer. Anal. Chem. 88, 3121–3129 (2016)PubMedCrossRefGoogle Scholar
  48. 48.
    Hauck, B.C., Siems, W.F., Harden, C.S., McHugh, V.M., Hill, H.H.: E/N effects on K0 values revealed by high precision measurements under low field conditions. Rev. Sci. Instrum. 87, 075104 (2016)PubMedCrossRefGoogle Scholar
  49. 49.
    Hauck, B.C., Siems, W.F., Harden, C.S., McHugh, V.M., Hill, H.H.: High accuracy ion mobility spectrometry for instrument calibration. Anal. Chem. 90, 4578–4584 (2018)PubMedCrossRefGoogle Scholar
  50. 50.
    Baker, E.S., Clowers, B.H., Li, F., Tang, K., Tolmachev, A.V., Prior, D.C., Belov, M.E., Smith, R.D.: Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Davis, A.L., Liu, W., Siems, W.F., Clowers, B.H.: Correlation ion mobility spectrometry. Analyst. 142, 292–301 (2017)PubMedCrossRefGoogle Scholar
  52. 52.
    Davis, A.L.: Multiplexing techniques applied to ion mobility measurements. Ph.D. Dissertation, Washington State University (2018)Google Scholar
  53. 53.
    Reinecke, T., Davis, A.L., Clowers, B.H.: Determination of gas-phase ion mobility coefficients using voltage sweep multiplexing. J. Am. Soc. Mass Spectrom. 30, 977–986 (2019)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryWashington State UniversityPullmanUSA
  2. 2.Bruker Daltonics Inc.BillericaUSA

Personalised recommendations