Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1654–1662 | Cite as

Topological Characterization of Coordination-Driven Self-assembly Complexes: Applications of Ion Mobility-Mass Spectrometry

  • Christopher S. Mallis
  • Manik Lal Saha
  • Peter J. Stang
  • David H. RussellEmail author
Research Article

Abstract

Coordination-driven self-assembly (CDSA) is increasingly used to synthesize coordination complexes containing metal-centered electron acceptors and typically nitrogen-containing electron donors. Characterization of the structures obtained from CDSA via crystallographic or spectroscopic means is limited due to difficulties in forming single crystals for X-ray studies and overlapping precursor and product signals in NMR. Here, we employ ion mobility-mass spectrometry (IM-MS), which provides a direct measure of size and shape of the CDSA complexes, to study the intact reaction products of a rhomboid-shaped complex. This approach negates the need for product isolation and crystallization and allows for tracking of the product distribution as a function of time. A potential challenge of IM-MS is that the size/shape of the observed CDSA complexes can vary with internal energy; however, we show that proper tuning of the instrument reduces the effects of collisional activation thereby allowing for retention of ion conformations that reflect solution-phase ion structures.

Graphical Abstract

Keywords

Ion mobility-mass spectrometry Coordination-driven self-assembly Supramolecular coordination complex 

Supplementary material

13361_2019_2276_MOESM1_ESM.docx (821 kb)
ESM 1 (DOCX 820 kb)

References

  1. 1.
    Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science. 295(5564), 2418–2421 (2002)CrossRefGoogle Scholar
  2. 2.
    Northrop, B.H., Zheng, Y.R., Chi, K.W., Stang, P.J.: Self-organization in coordination-driven self-assembly. Acc. Chem. Res. 42(10), 1554–1563 (2009)CrossRefGoogle Scholar
  3. 3.
    Baxter, P.N.W., Lehn, J.M., Baum, G., Fenske, D.: The design and generation of inorganic cylindrical cage architectures by metal-ion-directed multicomponent self-assembly. Chem. Eur. J. 5(1), 102–112 (1999)CrossRefGoogle Scholar
  4. 4.
    Lehn, J.M., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., Moras, D.: Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations - structure of an inorganic double helix. Proc. Natl. Acad. Sci. U. S. A. 84(9), 2565–2569 (1987)CrossRefGoogle Scholar
  5. 5.
    Kramer, R., Lehn, J.M., Marquis-Rigault, A.: Self-recognition in helicate self-assembly - spontaneous formation of helical metal-complexes from mixtures of ligands and metal-ions. Proc. Natl. Acad. Sci. U. S. A. 90(12), 5394–5398 (1993)CrossRefGoogle Scholar
  6. 6.
    Stang, P.J., Olenyuk, B.: Self-assembly, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metallacyclic polygons and polyhedra. Acc. Chem. Res. 30(12), 502–518 (1997)CrossRefGoogle Scholar
  7. 7.
    Datta, S., Saha, M.L., Stang, P.J.: Hierarchical assemblies of supramolecular coordination complexes. Acc. Chem. Res. 51(9), 2047–2063 (2018)CrossRefGoogle Scholar
  8. 8.
    Zhou, Z., Yan, X., Cook, T.R., Saha, M.L., Stang, P.J.: Engineering functionalization in a supramolecular polymer: hierarchical self-organization of triply orthogonal non-covalent interactions on a supramolecular coordination complex platform. J. Am. Chem. Soc. 138(3), 806–809 (2016)CrossRefGoogle Scholar
  9. 9.
    Saha, M.L., Yan, X., Stang, P.J.: Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and metallacages: fluorescence and its applications. Acc. Chem. Res. 49(11), 2527–2539 (2016)CrossRefGoogle Scholar
  10. 10.
    Fujita, D., Ueda, Y., Sato, S., Mizuno, N., Kumasaka, T., Fujita, M.: Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature. 540(7634), 563 (2016)CrossRefGoogle Scholar
  11. 11.
    Hoshino, M., Khutia, A., Xing, H., Inokuma, Y., Fujita, M.: The crystalline sponge method updated. IUCrJ. 3(Pt 2), 139–151 (2016)CrossRefGoogle Scholar
  12. 12.
    Yoneya, M., Tsuzuki, S., Yamaguchi, T., Sato, S., Fujita, M.: Coordination-directed self-assembly of M12L24 nanocage: effects of kinetic trapping on the assembly process. ACS Nano. 8(2), 1290–1296 (2014)CrossRefGoogle Scholar
  13. 13.
    Chan, Y.T., Li, X., Soler, M., Wang, J.L., Wesdemiotis, C., Newkome, G.R.: Self-assembly and traveling wave ion mobility mass spectrometry analysis of hexacadmium macrocycles. J. Am. Chem. Soc. 131(45), 16395–16397 (2009)CrossRefGoogle Scholar
  14. 14.
    Chan, Y.T., Li, X., Yu, J., Carri, G.A., Moorefield, C.N., Newkome, G.R., Wesdemiotis, C.: Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. J. Am. Chem. Soc. 133(31), 11967–11976 (2011)CrossRefGoogle Scholar
  15. 15.
    Li, X., Chan, Y.T., Newkome, G.R., Wesdemiotis, C.: Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83(4), 1284–1290 (2011)CrossRefGoogle Scholar
  16. 16.
    Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chem. Rev. 113(1), 734–777 (2013)CrossRefGoogle Scholar
  17. 17.
    Cook, T.R., Stang, P.J.: Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115(15), 7001–7045 (2015)CrossRefGoogle Scholar
  18. 18.
    Yam, V.W., Au, V.K., Leung, S.Y.: Light-emitting self-assembled materials based on d(8) and d(10) transition metal complexes. Chem. Rev. 115(15), 7589–7728 (2015)CrossRefGoogle Scholar
  19. 19.
    Hong, C.M., Bergman, R.G., Raymond, K.N., Toste, F.D.: Self-assembled tetrahedral hosts as supramolecular catalysts. Acc. Chem. Res. 51(10), 2447–2455 (2018)CrossRefGoogle Scholar
  20. 20.
    Zhang, D., Ronson, T.K., Nitschke, J.R.: Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 51(10), 2423–2436 (2018)CrossRefGoogle Scholar
  21. 21.
    Jurneczko, E., Barran, P.E.: How useful is ion mobility mass spectrometry for structural biology? The relationship between protein crystal structures and their collision cross sections in the gas phase. Analyst. 136(1), 20–28 (2011)CrossRefGoogle Scholar
  22. 22.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 1(1), 293–327 (2008)CrossRefGoogle Scholar
  23. 23.
    Bleiholder, C., Bowers, M.T.: The solution assembly of biological molecules using ion mobility methods: from amino acids to amyloid beta-protein. Annu Rev Anal Chem (Palo Alto, Calif). 10(1), 365–386 (2017)CrossRefGoogle Scholar
  24. 24.
    Kind, T., Fiehn, O.: Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinf. 8, 105 (2007)CrossRefGoogle Scholar
  25. 25.
    Shi, L., Holliday, A.E., Glover, M.S., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Ion mobility-mass spectrometry reveals the energetics of intermediates that guide polyproline folding. J. Am. Soc. Mass Spectrom. 27(1), 22–30 (2016)CrossRefGoogle Scholar
  26. 26.
    Gaye, M.M., Nagy, G., Clemmer, D.E., Pohl, N.L.: Multidimensional analysis of 16 glucose isomers by ion mobility spectrometry. Anal. Chem. 88(4), 2335–2344 (2016)CrossRefGoogle Scholar
  27. 27.
    Brocker, E.R., Anderson, S.E., Northrop, B.H., Stang, P.J., Bowers, M.T.: Structures of metallosupramolecular coordination assemblies can be obtained by ion mobility spectrometry-mass spectrometry. J. Am. Chem. Soc. 132(38), 13486–13494 (2010)CrossRefGoogle Scholar
  28. 28.
    Chen, S.H., Russell, D.H.: How closely related are conformations of protein ions sampled by IM-MS to native solution structures? J. Am. Soc. Mass Spectrom. 26(9), 1433–1443 (2015)CrossRefGoogle Scholar
  29. 29.
    Morsa, D., Gabelica, V., De Pauw, E.: Effective temperature of ions in traveling wave ion mobility spectrometry. Anal. Chem. 83(14), 5775–5782 (2011)CrossRefGoogle Scholar
  30. 30.
    Harrison, J. A.; Kelso, C.; Pukala, T. L.; Beck, J. L.: Conditions for analysis of native protein structures using uniform field drift tube ion mobility mass spectrometry and characterization of stable calibrants for TWIM-MS. J. Am. Soc. Mass. Spectrom. 30(2), 256-267(2019)Google Scholar
  31. 31.
    Gabelica, V., Livet, S., Rosu, F.: Optimizing native ion mobility Q-TOF in helium and nitrogen for very fragile noncovalent structures. J. Am. Soc. Mass Spectrom. 29(11), 2189–2198 (2018)CrossRefGoogle Scholar
  32. 32.
    Giles, K., Williams, J.P., Campuzano, I.: Enhancements in travelling wave ion mobility resolution. Rapid Commun. Mass Spectrom. 25(11), 1559–1566 (2011)CrossRefGoogle Scholar
  33. 33.
    Ruotolo, B.T., Benesch, J.L., Sandercock, A.M., Hyung, S.J., Robinson, C.V.: Ion mobility-mass spectrometry analysis of large protein complexes. Nat. Protoc. 3(7), 1139–1152 (2008)CrossRefGoogle Scholar
  34. 34.
    Duez, Q., Chirot, F., Lienard, R., Josse, T., Choi, C., Coulembier, O., Dugourd, P., Cornil, J., Gerbaux, P., De Winter, J.: Polymers for traveling wave ion mobility spectrometry calibration. J. Am. Soc. Mass Spectrom. 28(11), 2483–2491 (2017)CrossRefGoogle Scholar
  35. 35.
    Haler, J.R.N., Kune, C., Massonnet, P., Comby-Zerbino, C., Jordens, J., Honing, M., Mengerink, Y., Far, J., De Pauw, E.: Comprehensive ion mobility calibration: poly(ethylene oxide) polymer calibrants and general strategies. Anal. Chem. 89(22), 12076–12086 (2017)CrossRefGoogle Scholar
  36. 36.
    Patiny, L., Borel, A.: ChemCalc: a building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 53(5), 1223–1228 (2013)CrossRefGoogle Scholar
  37. 37.
    Kune, C., Far, J., De Pauw, E.: Accurate drift time determination by traveling wave ion mobility spectrometry: the concept of the diffusion calibration. Anal. Chem. 88(23), 11639–11646 (2016)CrossRefGoogle Scholar
  38. 38.
    Bush, M.F., Campuzano, I.D.G., Robinson, C.V.: Ion mobility mass spectrometry of peptide ions: effects of drift gas and calibration strategies. Anal. Chem. 84(16), 7124–7130 (2012)CrossRefGoogle Scholar
  39. 39.
    Smith, D.P., Knapman, T.W., Campuzano, I., Malham, R.W., Berryman, J.T., Radford, S.E., Ashcroft, A.E.: Deciphering drift time measurements from travelling wave ion mobility spectrometry-mass spectrometry studies. Eur. J. Mass Spectrom. (Chichester). 15(2), 113–130 (2009)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA
  2. 2.Department of ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations