Gas-Phase Fragmentation of Host-Guest Complexes of Cyclodextrins and Polyoxometalates

  • Pei Su
  • Andrew J. Smith
  • Jonas Warneke
  • Julia LaskinEmail author
Focus: Honoring Helmut Schwarz's Election to the National Academy of Sciences: Research Article


Gas-phase fragmentation pathways of host-guest complexes of cyclodextrins (CDs) and polyoxometalates (POMs) were examined using collision-induced dissociation (CID). The host-guest complexes studied here were composed of two different classes of POMs—Keggin (PW12O403−) and Lindqvist (M6O192−, M = Mo, W)—and three types of CDs (α-, β-, and γ-CD) differing in the diameter of the inner cavity. The CD-POM complexes were generated either by mixing methanol solutions of POM and CD or through a one-step acidic condensation of tetraoxometalates MO42− (M = Mo, W) with CDs for complexes with Keggin and Lindqvist anions, respectively, and introduced into the gas phase using electrospray ionization (ESI). We observe distinct differences in fragmentation pathways of the complexes of Keggin and Lindqvist POMs under high- and low-energy CID conditions. Specifically, direct dissociation and proton transfer from CD to POM accompanied by the separation of fragments is observed in CID of Keggin CD-POM complexes. In contrast, dissociation of CD complexes with Lindqvist POMs is dominated by the simultaneous loss of multiple water molecules. This unusual fragmentation channel is attributed to dissociation of the POM cluster inside the CD cavity accompanied by covalent bond formation between the fragments and CD and elimination of multiple water molecules. The observed covalent coupling of metal oxide clusters opens up opportunities for derivatization of macrocyclic host molecules using collisional excitation of gaseous non-covalent complexes.


Host-guest chemistry Polyoxometalates Cyclodextrins Covalent coupling Collision-induced dissociation Mass spectrometry 



The authors thank Dr. Youyun Zhou (Southern University of Science and Technology, China) for the valuable discussions. The authors also thank Jessica Townsend for the help in the graphic design. J. W. acknowledges support from a Feodor Lynen Fellowship of the Alexander von Humboldt Foundation.

Supplementary material

13361_2019_2266_MOESM1_ESM.docx (199 kb)
ESM 1 (DOCX 199 kb)


  1. 1.
    Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Eng. 27, 89–112 (1988)CrossRefGoogle Scholar
  2. 2.
    Steed, J.W., Turner, D.R., Wallace, K.: Core Concepts in Supramolecular Chemistry and Nanochemistry. Wiley, Hoboken (2007)Google Scholar
  3. 3.
    Vögtle, F., Weber, E.: Host Guest Complex Chemistry Macrocycles: Synthesis, Structures, Applications. Springer Science & Business Media, Berlin (2012)Google Scholar
  4. 4.
    Brown, C.J., Toste, F.D., Bergman, R.G., Raymond, K.N.: Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015)CrossRefGoogle Scholar
  5. 5.
    Jiao, Y., Tang, B., Zhang, Y., Xu, J.F., Wang, Z., Zhang, X.: Highly efficient supramolecular catalysis by endowing the reaction intermediate with adaptive reactivity. Angew. Chem. 130, 6185–6189 (2018)CrossRefGoogle Scholar
  6. 6.
    Zhang, D.S., Gao, Q., Chang, Z., Liu, X.T., Zhao, B., Xuan, Z.H., Hu, T.L., Zhang, Y.H., Zhu, J., Bu, X.H.: Rational construction of highly tunable donor–acceptor materials based on a crystalline host–guest platform. Adv. Mater. 30, 1804715 (2018)CrossRefGoogle Scholar
  7. 7.
    Qu, D.-H., Wang, Q.-C., Zhang, Q.-W., Ma, X., Tian, H.: Photoresponsive host–guest functional systems. Chem. Rev. 115, 7543–7588 (2015)CrossRefGoogle Scholar
  8. 8.
    Mao, D., Liang, Y., Liu, Y., Zhou, X., Ma, J., Jiang, B., Liu, J., Ma, D.: Acid-labile acyclic cucurbit [n] uril molecular containers for controlled release. Angew. Chem. Int. Ed. 56, 12614–12618 (2017)CrossRefGoogle Scholar
  9. 9.
    Ma, X., Zhao, Y.: Biomedical applications of supramolecular systems based on host–guest interactions. Chem. Rev. 115, 7794–7839 (2014)CrossRefGoogle Scholar
  10. 10.
    Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature. 437, 640 (2005)CrossRefGoogle Scholar
  11. 11.
    Schneider, H.J.: Binding mechanisms in supramolecular complexes. Angew. Chem. Int. Ed. 48, 3924–3977 (2009)CrossRefGoogle Scholar
  12. 12.
    Assaf, K.I., Nau, W.M.: The chaotropic effect as an assembly motif in chemistry. Angew. Chem. Int. Ed. 57, 13968–13981 (2018)CrossRefGoogle Scholar
  13. 13.
    Kaabel, S., Adamson, J., Topić, F., Kiesilä, A., Kalenius, E., Öeren, M., Reimund, M., Prigorchenko, E., Lõokene, A., Reich, H.J.: Chiral hemicucurbit [8] uril as an anion receptor: selectivity to size, shape and charge distribution. Chem. Sci. 8, 2184–2190 (2017)CrossRefGoogle Scholar
  14. 14.
    Gibb, C.L., Gibb, B.C.: Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011)CrossRefGoogle Scholar
  15. 15.
    Assaf, K.I., Ural, M.S., Pan, F., Georgiev, T., Simova, S., Rissanen, K., Gabel, D., Nau, W.M.: Water structure recovery in chaotropic anion recognition: high-affinity binding of dodecaborate clusters to γ-cyclodextrin. Angew. Chem. Int. Ed. 54, 6852–6856 (2015)CrossRefGoogle Scholar
  16. 16.
    Sullivan, M.R., Yao, W., Tang, D., Ashbaugh, H.S., Gibb, B.C.: The thermodynamics of anion complexation to nonpolar pockets. J. Phys. Chem. B. 122, 1702–1713 (2018)CrossRefGoogle Scholar
  17. 17.
    Assaf, K.I., Gabel, D., Zimmermann, W., Nau, W.M.: High-affinity host–guest chemistry of large-ring cyclodextrins. Org. Biomol. Chem. 14, 7702–7706 (2016)CrossRefGoogle Scholar
  18. 18.
    Assaf, K.I., Hennig, A., Peng, S., Guo, D.-S., Gabel, D., Nau, W.M.: Hierarchical host–guest assemblies formed on dodecaborate-coated gold nanoparticles. Chem. Commun. 53, 4616–4619 (2017)CrossRefGoogle Scholar
  19. 19.
    Warneke, J., Jenne, C., Bernarding, J., Azov, V.A., Plaumann, M.: Evidence for an intrinsic binding force between dodecaborate dianions and receptors with hydrophobic binding pockets. Chem. Commun. 52, 6300–6303 (2016)CrossRefGoogle Scholar
  20. 20.
    Buchecker, T., Schmid, P., Renaudineau, S., Diat, O., Proust, A., Pfitzner, A., Bauduin, P.: Polyoxometalates in the Hofmeister series. Chem. Commun. 54, 1833–1836 (2018)CrossRefGoogle Scholar
  21. 21.
    Naskar, B., Diat, O., Nardello-Rataj, V.R., Bauduin, P.: Nanometer-size polyoxometalate anions adsorb strongly on neutral soft surfaces. J. Phys. Chem. C. 119, 20985–20992 (2015)CrossRefGoogle Scholar
  22. 22.
    Pang, H.-j., Peng, J., Zhang, C.-j., Li, Y.-g., Zhang, P.-p., Ma, H.-y., Su, Z.-m.: A polyoxometalate-encapsulated 3D porous metal–organic pseudo-rotaxane framework. Chem. Commun. 46, 5097–5099 (2010)CrossRefGoogle Scholar
  23. 23.
    Cao, H.-L., Cai, F.-Y., Huang, H.-B., Karadeniz, B., Lü, J.: Polyoxometalate-cucurbituril molecular solid as photocatalyst for dye degradation under visible light. Inorg. Chem. Commun. 84, 164–167 (2017)CrossRefGoogle Scholar
  24. 24.
    Fang, X., Kögerler, P., Isaacs, L., Uchida, S., Mizuno, N.: Cucurbit [n] uril–polyoxoanion hybrids. J. Am. Chem. Soc. 131, 432–433 (2008)CrossRefGoogle Scholar
  25. 25.
    Goel, T., Barooah, N., Mallia, M.B., Bhasikuttan, A.C., Mohanty, J.: Recognition-mediated cucurbit [7] uril-heptamolybdate hybrid material: a facile supramolecular strategy for 99m Tc separation. Chem. Commun. 52, 7306–7309 (2016)CrossRefGoogle Scholar
  26. 26.
    Ishii, Y., Takenaka, Y., Konishi, K.: Porous organic–inorganic assemblies constructed from Keggin polyoxometalate anions and calix [4] arene–Na+ complexes: structures and guest-sorption profiles. Angew. Chem. 116, 2756–2759 (2004)CrossRefGoogle Scholar
  27. 27.
    Tian, A., Lin, X., Ying, J., Zhang, J., Lin, H., Liu, G., Zhao, D., Li, N., Wang, X.: Self-assembly of a molecular crown as a structural analogue of calix [4] arene to modify Keggin anions. Dalton Trans. 42, 9809–9812 (2013)CrossRefGoogle Scholar
  28. 28.
    Su, P., Prabhakaran, V., Johnson, G.E., Laskin, J.: In situ infrared spectroelectrochemistry for understanding structural transformations of precisely defined ions at electrochemical interfaces. Anal. Chem. 90, 10935–10942 (2018)CrossRefGoogle Scholar
  29. 29.
    Prabhakaran, V., Lang, Z., Clotet, A., Poblet, J.M., Johnson, G.E., Laskin, J.: Controlling the activity and stability of electrochemical interfaces using atom-by-atom metal substitution of redox species. ACS Nano. 13, 458–466 (2018)CrossRefGoogle Scholar
  30. 30.
    Martin-Sabi, M., Soriano-López, J., Winter, R.S., Chen, J.-J., Vilà-Nadal, L., Long, D.-L., Galán-Mascarós, J.R., Cronin, L.: Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nat. Catal. 1, 208 (2018)CrossRefGoogle Scholar
  31. 31.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)CrossRefGoogle Scholar
  32. 32.
    Montes-García, V., Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M.: Metal nanoparticles and supramolecular macrocycles: a tale of synergy. Chem. Eur. J. 20, 10874–10883 (2014)CrossRefGoogle Scholar
  33. 33.
    Engel, S., Möller, N., Ravoo, B.J.: Stimulus-responsive assembly of nanoparticles using host–guest interactions of cyclodextrins. Chem. Eur. J. 24, 4741–4748 (2018)CrossRefGoogle Scholar
  34. 34.
    Zhang, P., Meijide Suárez, J., Driant, T., Derat, E., Zhang, Y., Ménand, M., Roland, S., Sollogoub, M.: Cyclodextrin cavity-induced mechanistic switch in copper-catalyzed hydroboration. Angew. Chem. 129, 10961–10965 (2017)CrossRefGoogle Scholar
  35. 35.
    Li, H., Meng, B., Chai, S.-H., Liu, H., Dai, S.: Hyper-crosslinked β-cyclodextrin porous polymer: an adsorption-facilitated molecular catalyst support for transformation of water-soluble aromatic molecules. Chem. Sci. 7, 905–909 (2016)CrossRefGoogle Scholar
  36. 36.
    Jing, J., Szarpak-Jankowska, A., Guillot, R., Pignot-Paintrand, I., Picart, C., Auzély-Velty, R.: Cyclodextrin/paclitaxel complex in biodegradable capsules for breast cancer treatment. Chem. Mater. 25, 3867–3873 (2013)CrossRefGoogle Scholar
  37. 37.
    Zhou, J., Yu, G., Huang, F.: Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem. Soc. Rev. 46, 7021–7053 (2017)CrossRefGoogle Scholar
  38. 38.
    Wu, Y., Shi, R., Wu, Y.-L., Holcroft, J.M., Liu, Z., Frasconi, M., Wasielewski, M.R., Li, H., Stoddart, J.F.: Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 137, 4111–4118 (2015)CrossRefGoogle Scholar
  39. 39.
    Moussawi, M.A., Leclerc-Laronze, N., Floquet, S., Abramov, P.A., Sokolov, M.N., Cordier, S., Ponchel, A., Monflier, E., Bricout, H., Landy, D.: Polyoxometalate, cationic cluster, and γ-cyclodextrin: from primary interactions to supramolecular hybrid materials. J. Am. Chem. Soc. 139, 12793–12803 (2017)CrossRefGoogle Scholar
  40. 40.
    Moussawi, M.A., Haouas, M., Floquet, S., Shepard, W.E., Abramov, P.A., Sokolov, M.N., Fedin, V.P., Cordier, S., Ponchel, A., Monflier, E.: Nonconventional three-component hierarchical host–guest assembly based on Mo-blue ring-shaped giant anion, γ-cyclodextrin, and Dawson-type polyoxometalate. J. Am. Chem. Soc. 139, 14376–14379 (2017)CrossRefGoogle Scholar
  41. 41.
    Zhang, B., Guan, W., Yin, F., Wang, J., Li, B., Wu, L.: Induced chirality and reversal of phosphomolybdate cluster via modulating its interaction with cyclodextrins. Dalton Trans. 47, 1388–1392 (2018)CrossRefGoogle Scholar
  42. 42.
    Yang, P., Zhao, W., Shkurenko, A., Belmabkhout, Y., Eddaoudi, M., Dong, X., Alshareef, H.N., Khashab, N.M.: Polyoxometalate–cyclodextrin metal–organic frameworks: from tunable structure to customized storage functionality. J. Am. Chem. Soc. 141, 1847-1851 (2019)Google Scholar
  43. 43.
    Stuckart, M., Izarova, N.V., van Leusen, J., Smekhova, A., Schmitz-Antoniak, C., Bamberger, H., van Slageren, J., Santiago-Schübel, B., Kögerler, P.: Host–guest-induced environment tuning of 3d ions in a polyoxopalladate matrix. Chem. Eur. J. 24, 17767–17778 (2018)CrossRefGoogle Scholar
  44. 44.
    Gabelica, V., Galic, N., De Pauw, E.: On the specificity of cyclodextrin complexes detected by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 946–953 (2002)CrossRefGoogle Scholar
  45. 45.
    Schalley, C.A.: Supramolecular chemistry goes gas phase: the mass spectrometric examination of noncovalent interactions in host–guest chemistry and molecular recognition. Int. J. Mass Spectrom. 194, 11–39 (2000)CrossRefGoogle Scholar
  46. 46.
    Weimann, D.P., Schalley, C.A.: Host–guest chemistry of self-assembling supramolecular capsules in the gas phase. Supramol. Chem. 20, 117–128 (2008)CrossRefGoogle Scholar
  47. 47.
    Qi, Z., Heinrich, T., Moorthy, S., Schalley, C.A.: Gas-phase chemistry of molecular containers. Chem. Soc. Rev. 44, 515–531 (2015)CrossRefGoogle Scholar
  48. 48.
    Lebrilla, C.B.: The gas-phase chemistry of cyclodextrin inclusion complexes. Acc. Chem. Res. 34, 653–661 (2001)CrossRefGoogle Scholar
  49. 49.
    Penn, S.G., He, F., Lebrilla, C.B.: Peptides complexed to cyclodextrin fragment rather than dissociate when subjected to blackbody infrared radiation. J. Phys. Chem. B. 102, 9119–9126 (1998)CrossRefGoogle Scholar
  50. 50.
    Vrkic, A.K., O’Hair, R.A., Lebrilla, C.B.: Unusual covalent bond-breaking reactions of β-cyclodextrin inclusion complexes of nucleobases/nucleosides and related guest molecules. Eur. J. Mass Spectrom. 9, 563–577 (2003)CrossRefGoogle Scholar
  51. 51.
    Ma, X., Wei, Z., Xiong, X., Jiang, Y., He, J., Zhang, S., Fang, X., Zhang, X.: Gas-phase fragmentation of host–guest complexes between β-cyclodextrin and small molecules. Talanta. 93, 252–256 (2012)CrossRefGoogle Scholar
  52. 52.
    Bakhtiar, R., Kaifer, A.: Mass spectrometry studies on the complexation of several organometallic complexes by α-and β-cyclodextrins. Rapid Commun. Mass Spectrom. 12, 111–114 (1998)CrossRefGoogle Scholar
  53. 53.
    Fan, Y., Lu, S., Cao, J.: A novel inorganic-organic hybrid complex between polyoxometalate and cyclodextrin: synthesis, structure and catalytic activity. Int. J. Mass Spectrom. 435, 163–167 (2019)CrossRefGoogle Scholar
  54. 54.
    Fan, Y., Zhang, Y., Jia, Q., Cao, J., Wu, W.: The stabilizing role of cyclodextrins on Keggin phosphotungstic acid by complexation unveiled by electrospray mass spectrometry. Mass Spectrom. Lett. 6, 13–16 (2015)CrossRefGoogle Scholar
  55. 55.
    Julian, R.R., May, J.A., Stoltz, B.M., Beauchamp, J.: Molecular mousetraps: gas-phase studies of the covalent coupling of noncovalent complexes initiated by reactive carbenes formed by controlled activation of diazo precursors. Angew. Chem. Int. Ed. 42, 1012–1015 (2003)CrossRefGoogle Scholar
  56. 56.
    Julian, R.R., May, J.A., Stoltz, B.M., Beauchamp, J.: Biomimetic approaches to gas phase peptide chemistry: combining selective binding motifs with reactive carbene precursors to form molecular mousetraps. Int. J. Mass Spectrom. 228, 851–864 (2003)CrossRefGoogle Scholar
  57. 57.
    Schaefer, M.: Supramolecular crown ether adducts in the gas phase: from molecular recognition of amines to the covalent coupling of host/guest molecules. Angew. Chem. Int. Ed. 42, 1896–1899 (2003)CrossRefGoogle Scholar
  58. 58.
    Lee, T.-C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grün, C.H., Jänis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376 (2013)CrossRefGoogle Scholar
  59. 59.
    Falaise, C., Moussawi, M.A., Floquet, S., Abramov, P.A., Sokolov, M.N., Haouas, M., Cadot, E.: Probing dynamic library of metal-oxo building blocks with γ-cyclodextrin. J. Am. Chem. Soc. 140, 11198–11201 (2018)CrossRefGoogle Scholar
  60. 60.
    Klemperer, W.G.: Tetrabutylammonium isopolyoxometalates. Inorg. Synth. 27, 74–85 (1990)Google Scholar
  61. 61.
    Fetterolf, D., Yost, R.-A.: Energy-resolved collision-induced dissociation in tandem mass spectrometry. Int. J. Mass Spectrom. Ion Phys. 44, 37–50 (1982)CrossRefGoogle Scholar
  62. 62.
    Wells, J.M., McLuckey, S.A.: Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 402, 148–185 (2005)CrossRefGoogle Scholar
  63. 63.
    Bayat, P., Gatineau, D., Lesage, D., Marhabaie, S., Martinez, A., Cole, R.B.: Investigation of activation energies for dissociation of host-guest complexes in the gas phase using low-energy collision induced dissociation. J. Mass Spectrom. 54, 437–448 (2019)Google Scholar
  64. 64.
    Vinokur, N., Ryzhov, V.: Using collision-induced dissociation with corrections for the ion number of degrees of freedom for quick comparisons of relative bonding strength. J. Mass Spectrom. 39, 1268–1274 (2004)CrossRefGoogle Scholar
  65. 65.
    Ganapathy, S., Fournier, M., Paul, J., Delevoye, L., Guelton, M., Amoureux, J.: Location of protons in anhydrous Keggin heteropolyacids H3PMo12O40 and H3PW12O40 by 1H {31P}/31P {1H} REDOR NMR and DFT quantum chemical calculations. J. Am. Chem. Soc. 124, 7821–7828 (2002)CrossRefGoogle Scholar
  66. 66.
    Li, Z., Couzijn, E.P., Zhang, X.: Intrinsic properties of α-cyclodextrin complexes with benzoate derivatives in the gas phase: an experimental and theoretical study. J. Phys. Chem. B. 116, 943–950 (2012)CrossRefGoogle Scholar
  67. 67.
    Jenne, C., Keßler, M., Warneke, J.: Protic anions [H(B12X12)](X= F, Cl, Br, I) that act as Brønsted acids in the gas phase. Chem. Eur. J. 21, 5887–5891 (2015)CrossRefGoogle Scholar
  68. 68.
    Li, S., Dixon, D.A.: Molecular and electronic structures, Brönsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J. Phys. Chem. A. 110, 6231–6244 (2006)CrossRefGoogle Scholar
  69. 69.
    Price, N.P.: Oligosaccharide structures studied by hydrogen–deuterium exchange and MALDI-TOF mass spectrometry. Anal. Chem. 78, 5302–5308 (2006)CrossRefGoogle Scholar
  70. 70.
    Kellersberger, K.A., Dejsupa, C., Liang, Y., Pope, R.M., Dearden, D.V.: Gas phase studies of ammonium–cyclodextrin compounds using Fourier transform ion cyclotron resonance. Int. J. Mass Spectrom. 193, 181–195 (1999)CrossRefGoogle Scholar
  71. 71.
    Waters, T., O’Hair, R.A., Wedd, A.G.: Catalytic gas phase oxidation of methanol to formaldehyde. J. Am. Chem. Soc. 125, 3384–3396 (2003)CrossRefGoogle Scholar
  72. 72.
    Llusar, R., Sorribes, I., Vicent, C.: Electrospray ionization based methods for the generation of polynuclear oxo-and hydroxo group 6 anions in the gas-phase. J. Clust. Sci. 20, 177–192 (2009)CrossRefGoogle Scholar
  73. 73.
    Harris, B.L., Waters, T., Khairallah, G.N., O’Hair, R.A.: Gas-phase reactions of [VO2(OH)2] and [V2O5(OH)] with methanol: experiment and theory. J. Phys. Chem. A. 117, 1124–1135 (2012)CrossRefGoogle Scholar
  74. 74.
    Jackson, P., Fisher, K.J., Willett, G.D.: The catalytic activation of primary alcohols on niobium oxide surfaces unraveled: the gas phase reactions of NbxOy clusters with methanol and ethanol. Chem. Phys. 262, 179–187 (2000)CrossRefGoogle Scholar
  75. 75.
    Waters, T., O'Hair, R.A., Wedd, A.G.: Gas-phase reactivity of heterobinuclear oxometalate anions [CrMoO6(OR)],[CrWO6(OR)], and [MoWO6(OR)] (R= H, nBu). Inorg. Chem. 44, 3356–3366 (2005)CrossRefGoogle Scholar
  76. 76.
    Laskin, J., Johnson, G.E., Warneke, J., Prabhakaran, V.: From isolated ions to multilayer functional materials using ion soft-landing. Angew. Chem. Int. Ed. 57, 16270–16284 (2018)CrossRefGoogle Scholar
  77. 77.
    Warneke, J., McBriarty, M.E., Riechers, S.L., China, S., Engelhard, M.H., Apra, E., Young, R.P., Washton, N.M., Jenne, C., Johnson, G.E., Laskin, J.: Self-organizing layers from complex molecular anions. Nat. Commun. 9, 1889 (2018)CrossRefGoogle Scholar
  78. 78.
    Su, P., Hu, H., Warneke, J., Belov, M.E., Anderson, G.A., Laskin, J.: Design and performance of a dual-polarity instrument for ion soft landing. Anal. Chem. 91, 5904–5912 (2019)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA
  2. 2.Wilhelm-Ostwald-Institut für Physikalische und Theoretische ChemieUniversität LeipzigLeipzigGermany

Personalised recommendations