Advertisement

Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1601–1608 | Cite as

Methionine and Selenomethionine as Energy Transfer Acceptors for Biomolecular Structure Elucidation in the Gas Phase

  • Lance E. Talbert
  • Ryan R. JulianEmail author
Research Article

Abstract

Mass spectrometry affords rapid and sensitive analysis of peptides and proteins. Coupling spectroscopy with mass spectrometry allows for the development of new methods to enhance biomolecular structure determination. Herein, we demonstrate two new energy acceptors that can be utilized for action-excitation energy transfer experiments. In the first system, C–S bonds in methionine act as energy acceptors from native chromophores, including tyrosine, tryptophan, and phenylalanine. Comparison among chromophores reveals that tyrosine transfers energy most efficiently at 266 nm, but phenylalanine and tryptophan also transfer energy with comparable efficiencies. Overall, the C–S bond dissociation yields following energy transfer are low for methionine, which led to an investigation of selenomethionine, a common analog that is found in many naturally occurring proteins. Sulfur and selenium are chemically similar, but C–Se bonds are weaker than C–S bonds and have lower lying σ* anti-bonding orbitals. Excitation of peptides containing tyrosine and tryptophan results in efficient energy transfer to selenomethionine and abundant C–Se bond dissociation. A series of helical peptides were examined where the positions of the donor or acceptor were systematically scanned to explore the influence of distance and helix orientation on energy transfer. The distance was found to be the primary factor affecting energy transfer efficiency, suggesting that selenomethionine may be a useful acceptor for probing protein structure in the gas phase.

Keywords

FRET Action spectroscopy Distance constraint EET Photodissociation Ion mobility 

Notes

Acknowledgements

The authors gratefully acknowledge funding from the NSF (CHE-1401737) and NIH (R01GM107099).

References

  1. 1.
    Han, X., Aslanian, A., Yates, J.R.: Mass spectrometry for proteomics. Curr. Opin. Chem. Biol. 12, 483–490 (2008)CrossRefGoogle Scholar
  2. 2.
    Picotti, P., Clément-Ziza, M., Lam, H., Campbell, D.S., Schmidt, A., Deutsch, E.W., Röst, H., Sun, Z., Rinner, O., Reiter, L., Shen, Q., Michaelson, J.J., Frei, A., Alberti, S., Kusebauch, U., Wollscheid, B., Moritz, R.L., Beyer, A., Aebersold, R.: A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature. 494, 266 (2013)CrossRefGoogle Scholar
  3. 3.
    Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., Heck, A.J.R.: Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484 (2009)CrossRefGoogle Scholar
  4. 4.
    Shi, S.D.H., Hemling, M.E., Carr, S.A., Horn, D.M., Lindh, I., McLafferty, F.W.: Phosphopeptide/phosphoprotein mapping by Electron capture dissociation mass spectrometry. Anal. Chem. 73, 19–22 (2001)CrossRefGoogle Scholar
  5. 5.
    Cleland, T.P., DeHart, C.J., Fellers, R.T., VanNispen, A.J., Greer, J.B., LeDuc, R.D., Parker, W.R., Thomas, P.M., Kelleher, N.L., Brodbelt, J.S.: High-throughput analysis of intact human proteins using UVPD and HCD on an orbitrap mass spectrometer. J. Proteome Res. 16, 2072–2079 (2017)CrossRefGoogle Scholar
  6. 6.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu Rev Anal Chem (Palo Alto, Calif). 1, 293–327 (2008)CrossRefGoogle Scholar
  7. 7.
    Harvey, S.R., MacPhee, C.E., Barran, P.E.: Ion mobility mass spectrometry for peptide analysis. Methods. 54, 454–461 (2011)CrossRefGoogle Scholar
  8. 8.
    Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T.: Collision cross sections of proteins and their complexes: a calibration framework and database for gas-phase structural biology. Anal. Chem. 82, 9557–9565 (2010)CrossRefGoogle Scholar
  9. 9.
    McLean, J.A., Ruotolo, B.T., Gillig, K.J., Russell, D.H.: Ion mobility–mass spectrometry: a new paradigm for proteomics. Int. J. Mass Spectrom. 240, 301–315 (2005)CrossRefGoogle Scholar
  10. 10.
    Pierson, N.A., Chen, L., Valentine, S.J., Russell, D.H., Clemmer, D.E.: Number of solution states of bradykinin from ion mobility and mass spectrometry measurements. J. Am. Chem. Soc. 133, 13810–13813 (2011)CrossRefGoogle Scholar
  11. 11.
    Wyttenbach, T., Bowers, M.T.: Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility–mass spectrometry environment. J. Phys. Chem. B. 115, 12266–12275 (2011)CrossRefGoogle Scholar
  12. 12.
    May, J.C., Goodwin, C.R., Lareau, N.M., Leaptrot, K.L., Morris, C.B., Kurulugama, R.T., Mordehai, A., Klein, C., Barry, W., Darland, E., Overney, G., Imatani, K., Stafford, G.C., Fjeldsted, J.C., McLean, J.A.: Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 86, 2107–2116 (2014)CrossRefGoogle Scholar
  13. 13.
    Zhong, Y., Han, L., Ruotolo, B.T.: Collisional and coulombic unfolding of gas-phase proteins: high correlation to their domain structures in solution. Angew. Chemie Int. Ed. 53, 9209–9212 (2014)CrossRefGoogle Scholar
  14. 14.
    Warnke, S., Baldauf, C., Bowers, M.T., Pagel, K., von Helden, G.: Photodissociation of conformer-selected ubiquitin ions reveals site-specific cis/trans isomerization of proline peptide bonds. J. Am. Chem. Soc. 136, 10308–10314 (2014)CrossRefGoogle Scholar
  15. 15.
    Polfer, N.C., Oomens, J.: Vibrational spectroscopy of bare and solvated ionic complexes of biological relevance. Mass Spectrom. Rev. 28, 468–494 (2009)CrossRefGoogle Scholar
  16. 16.
    Periasamy, A.: Fluorescence resonance energy transfer microscopy: a mini review. J. Biomed. Opt. 6, 287–291 (2001)CrossRefGoogle Scholar
  17. 17.
    Forbes, M.W., Jockusch, R.A.: Gas-phase fluorescence excitation and emission spectroscopy of three xanthene dyes (rhodamine 575, rhodamine 590 and rhodamine 6G) in a quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 22, 93–109 (2011)CrossRefGoogle Scholar
  18. 18.
    Czar, M.F., Zosel, F., König, I., Nettels, D., Wunderlich, B., Schuler, B., Zarrine-Afsar, A., Jockusch, R.A.: Gas-phase FRET efficiency measurements to probe the conformation of mass-selected proteins. Anal. Chem. 87, 7559–7565 (2015)CrossRefGoogle Scholar
  19. 19.
    Dashtiev, M., Azov, V., Frankevich, V., Scharfenberg, L., Zenobi, R.: Clear evidence of fluorescence resonance energy transfer in gas-phase ions. J. Am. Soc. Mass Spectrom. 16, 1481–1487 (2005)CrossRefGoogle Scholar
  20. 20.
    Hendricks, N.G., Julian, R.R.: Leveraging ultraviolet photodissociation and spectroscopy to investigate peptide and protein three-dimensional structure with mass spectrometry. Analyst. 141, 4534–4540 (2016)CrossRefGoogle Scholar
  21. 21.
    Daly, S., Poussigue, F., Simon, A.-L., MacAleese, L., Bertorelle, F., Chirot, F., Antoine, R., Dugourd, P.: Action-FRET: probing the molecular conformation of mass-selected gas-phase peptides with Förster resonance energy transfer detected by acceptor-specific fragmentation. Anal. Chem. 86, 8798–8804 (2014)CrossRefGoogle Scholar
  22. 22.
    Daly, S., Knight, G., Halim, M.A., Kulesza, A., Choi, C.M., Chirot, F., MacAleese, L., Antoine, R., Dugourd, P.: Action-FRET of a gaseous protein. J. Am. Soc. Mass Spectrom. 28, 38–49 (2017)CrossRefGoogle Scholar
  23. 23.
    Hendricks, N.G., Lareau, N.M., Stow, S.M., McLean, J.A., Julian, R.R.: Bond-specific dissociation following excitation energy transfer for distance constraint determination in the gas phase. J. Am. Chem. Soc. 136, 13363–13370 (2014)CrossRefGoogle Scholar
  24. 24.
    Hendricks, N.G., Julian, R.R.: Characterizing gaseous peptide structure with action-EET and simulated annealing. Phys. Chem. Chem. Phys. 17, 25822- 25827 (2015)Google Scholar
  25. 25.
    Hendricks, N.G., Julian, R.R.: Two-step energy transfer enables use of phenylalanine in action-EET for distance constraint determination in gaseous biomolecules. Chem. Commun. 51, 12720–12723 (2015)CrossRefGoogle Scholar
  26. 26.
    Scutelnic, V., Prlj, A., Zabuga, A., Corminboeuf, C., Rizzo, T.R.: Infrared spectroscopy as a probe of electronic energy transfer. J. Phys. Chem. Lett. 9, 3217–3223 (2018)CrossRefGoogle Scholar
  27. 27.
    Talbert, L.E., Julian, R.R.: Directed-backbone dissociation following bond-specific carbon-sulfur UVPD at 213 nm. J. Am. Soc. Mass Spectrom. 29, 1760- 1767 (2018)Google Scholar
  28. 28.
    Diedrich, J.K., Julian, R.R.: Facile identification of phosphorylation sites in peptides by radical directed dissociation. Anal. Chem. 83, 6818–6826 (2011)CrossRefGoogle Scholar
  29. 29.
    Diedrich, J.K., Julian, R.R.: Site-selective fragmentation of peptides and proteins at quinone-modified cysteine residues investigated by ESI-MS. Anal. Chem. 82, 4006–4014 (2010)CrossRefGoogle Scholar
  30. 30.
    Soares, M.S.P., Oliveira, P.S., Debom, G.N., da Silveira Mattos, B., Polachini, C.R., Baldissarelli, J., Morsch, V.M., Schetinger, M.R.C., Tavares, R.G., Stefanello, F.M., Spanevello, R.M.: Chronic administration of methionine and/or methionine sulfoxide alters oxidative stress parameters and ALA-D activity in liver and kidney of young rats. Amino Acids. 49, 129–138 (2017)CrossRefGoogle Scholar
  31. 31.
    Hamdy, O.M., Alizadeh, A., Julian, R.R.: The innate capacity of proteins to protect against reactive radical species. Analyst. 140(15), 5023–5028 (2015)CrossRefGoogle Scholar
  32. 32.
    Hatfield, D., Diamond, A.: UGA: a split personality in the universal genetic code. Trends Genet. 9, 69–70 (1993)CrossRefGoogle Scholar
  33. 33.
    Berntsson, R.P.-A., Alia Oktaviani, N., Fusetti, F., Thunnissen, A.-M.W.H., Poolman, B., Slotboom, D.-J.: Selenomethionine incorporation in proteins expressed in Lactococcus lactis. Protein Sci. 18, 1121–1127 (2009)CrossRefGoogle Scholar
  34. 34.
    Barton, W.A., Tzvetkova-Robev, D., Erdjument-Bromage, H., Tempst, P., Nikolov, D.B.: Highly efficient selenomethionine labeling of recombinant proteins produced in mammalian cells. Protein Sci. 15, 2008–2013 (2006)CrossRefGoogle Scholar
  35. 35.
    Wessjohann, L.A., Schneider, A., Abbas, M., Brandt, W.: Selenium in chemistry and biochemistry in comparison to sulfur. Biol. Chem. 388, 997 (2007)CrossRefGoogle Scholar
  36. 36.
    Reich, H.J., Hondal, R.J.: Why nature chose selenium. ACS Chem. Biol. 11, 821–841 (2016)CrossRefGoogle Scholar
  37. 37.
    Chan, W.C., White, P.D.: Fmoc solid phase peptide synthesis: a practical approach. (2004)Google Scholar
  38. 38.
    Rossi, M., Blum, V., Kupser, P., von Helden, G., Bierau, F., Pagel, K., Meijer, G., Scheffler, M.: Secondary structure of Ac-Alan-LysH+ polyalanine peptides (n = 5,10,15) in Vacuo: helical or not? J. Phys. Chem. Lett. 1, 3465–3470 (2010)CrossRefGoogle Scholar
  39. 39.
    Bossio, R.E., Hudgins, R.R., Marshall, A.G.: Gas phase photochemistry can distinguish different conformations of unhydrated photoaffinity-labeled peptide ions. J. Phys. Chem. B. 107, 3284–3289 (2003)CrossRefGoogle Scholar
  40. 40.
    Mach, H., Sanyal, G., Volkin, D.B., Middaugh, C.R.: Applications of ultraviolet absorption spectroscopy to the analysis of biopharmaceuticals. In: Therapeutic Protein and Peptide Formulation and Delivery, pp. 11–186. American Chemical Society (1997) 10.1021/bk-1997-0675.ch011Google Scholar
  41. 41.
    Hudgins, R.R., Jarrold, M.F.: Helix formation in unsolvated alanine-based peptides: helical monomers and helical dimers. J. Am. Chem. Soc. 121(14), 3494–3501 (1999)CrossRefGoogle Scholar
  42. 42.
    Ouerdane, L., Mester, Z.: Production and characterization of fully selenomethionine-labeled Saccharomyces cerevisiae. J. Agric. Food Chem. 56, 11792–11799 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaRiversideUSA

Personalised recommendations