Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1801–1812 | Cite as

MeV-SIMS TOF Imaging of Organic Tissue with Continuous Primary Beam

  • Boštjan Jenčič
  • Primož Vavpetič
  • Mitja Kelemen
  • Matjaž Vencelj
  • Katarina Vogel-Mikuš
  • Anja Kavčič
  • Primož PeliconEmail author
Research Article


MeV-SIMS is an emerging mass spectrometry imaging method, which utilizes fast, heavy ions to desorb secondary molecules. High yields and low fragmentation rates of large molecules, associated with the electronic sputtering process, make it particularly useful in biomedical research, where insight into distribution of organic molecules is needed. Since the implementation of MeV-SIMS in to the micro-beam line at the tandem accelerator of Jožef Stefan Institute, MeV-SIMS provided some valuable observations on the distribution of biomolecules in plant tissue, as discussed by Jenčič et al. (Nucl. Inst. Methods Phys. Res. B. 371, 205–210, 2016; Nucl. Inst. Methods Phys. Res. B. 404, 140–145, 2017). However, limited focusing ability of the chlorine ion beam only allowed imaging at the tissue level. In order to surpass shortcomings of the existing method, we introduced a new approach, where we employ a continuous, low-current primary beam. In this mode, we bombard thin samples with a steady chlorine ion flux of approx. 5000 ions/s. After desorbing molecules, chlorine ions penetrate through the thinly cut sample and trigger the time-of-flight “start” signal on a continuous electron multiplier detector, positioned behind the sample. Such bombardment is more effective than previously used pulsing-beam mode, which demanded several orders of magnitude higher primary ion beam currents. Sub-micrometer focusing of low-current primary ion beam allows imaging of biological tissue on a subcellular scale. Simultaneously, new time-of-flight acquisition approach also improves mass resolution by a factor of 5. Within the article, we compare the performance of both methods and demonstrate the application of continuous mode on biological tissue. We also describe the thin sample preparation protocol, necessary for measurements with low primary ion currents.


MeV-SIMS Time-of-flight Electronic sputtering Molecular imaging Imaging mass spectrometry 



The work at the Jožef Stefan Institute was supported by the Slovenian research agency (ARRS) grants J7-9398, N1-0090, P1-0112, I0-0005, P1-0212, and EU H2020 project no. 824096 “RADIATE.”


  1. 1.
    Caprioli, R.: Molecular imaging of tissue sections by mass spectrometry: looking beyond the microscope. J. Biomol. Tech. 23, 58 (2012)Google Scholar
  2. 2.
    Ferguson, C.N., Fowler, J.M., Waxer, J.F., Gatti, R.A., Loo, J.A.: Mass spectrometry - based tissue imaging of small molecules. Adv. Exp. Med. Biol. 806, 283–299 (2014)CrossRefGoogle Scholar
  3. 3.
    Soltwisch, J., Kettling, H., Vens-Capell, S., Wiegelmann, M., Muthing, J., Dreisewerd, K.: Mass spectrometry imaging with laser - induced postionization. Science. 348, 211–215 (2015)CrossRefGoogle Scholar
  4. 4.
    Bodzon-Kulakowska, A., Suder, P.: Imaging mass spectrometry: instrumentation, applications and combination with other visualization techniques. Mass. Spectrom. Rev. 35, 147–169 (2016)CrossRefGoogle Scholar
  5. 5.
    Prideaux, B., Stoeckli, M.: Mass spectrometry imaging for drug distribution studies. J. Proteome. 75, 4999–5013 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhao, Y.S., Li, C.: Mass spectrometry imaging: applications in drug distribution studies. Curr. Drug Metab. 16, 807–815 (2015)CrossRefGoogle Scholar
  7. 7.
    Giordano, S., Zucchetti, M., Decio, A., Cesca, M., Fuso Nerini, I., Maiezza, M., Ferrari, M., Licandro, S.A., Frapolli, R., Giavazzi, R., Maurizio, D., Davoli, E., Morosi, L.: Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging. Sci. Rep. 6, 39284 (2016)CrossRefGoogle Scholar
  8. 8.
    Patel, E.: MALDI - MS imaging for the study of tissue pharmacodynamics and toxicodynamics. Bioanalysis. 7, 91–101 (2015)CrossRefGoogle Scholar
  9. 9.
    Bjarnholt, N., Li, B., D’Alvise, J., Janfelt, C.: Mass spectrometry imaging of plant metabolites - principles and possibilities. Nat. Prod. Rep. 31, 818–837 (2014)CrossRefGoogle Scholar
  10. 10.
    Dong, Y., Li, B., Malitsky, S., Rogachev, I., Aharoni, A., Kaftan, F., Svatoš, A., Franceschi, P.: Sample preparation for mass spectrometry imaging of plant tissues: a review. Front. Plant Sci. 7, 60 (2016)Google Scholar
  11. 11.
    DeBord, J.D., Smith, D.F., Anderton, C.R., Heeren, R.A., Paša-Tolić, L., Gomer, R.H., Fernandez-Lima, F.A.: Secondary ion mass spectrometryimaging of dictyostelium dilcoideum aggregation streams. PLoS One. 9, e99319 (2014)Google Scholar
  12. 12.
    Barbacci, D. C., Roux, A., Muller, L., Jackson, S. N., Post, J., Baldwin,K., Hoffer, B., Balaban, C. D., Schultz, J. A., Gouty, S., Cox, B. M. and Woods, A. S.: Mass spectrometric imaging of ceramide biomarkers tracks therapeutic response in traumatic brain injury. Chem. Neurosci. 8, 2266–2274 (2017)Google Scholar
  13. 13.
    Angelo, M., Sean, C., Bendall, S.C., Finck, R., Hale, M.B., Hitzman, C., Borowsky, A.D., Levenson, R.M., Lowe, J.B., Liu, S.D., Zhao, S., Natkunam, Y., Nolan, G.P.: Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014)CrossRefGoogle Scholar
  14. 14.
    Wickerman, J.C., Gilmore, I.: Surface Analysis: the Principal Techniques, 2nd edn., p. 688. Wiley, Hoboken (2009)Google Scholar
  15. 15.
    Takats, Z., Wiseman, J.M., Gologan, B., Cooks, G.: Science. 306, 471–473 (2004)CrossRefGoogle Scholar
  16. 16.
    Wickerman, J.C.: Analyst. 136, 2199 (2011)CrossRefGoogle Scholar
  17. 17.
    Vestal, M.L.: Hizrbak if Nass Soectrinetry, vol. 44, pp. 303–317 (2009)Google Scholar
  18. 18.
    Laiko, V.V., Taranenko, N.I., Berkout, V.D., Yakshin, M.A., Prasad, C.R., Lee, H.S., Doroshenko, V.M.: J. Am. Soc. Mass Spectrom. 13, 354–361 (2002)CrossRefGoogle Scholar
  19. 19.
    Fletcher, J.S., Conian, X.A., Jones, E.A., Biddulph, G., Lockyer, N.P., Vickerman, J.C.: TOF-SIMS analysis using C60. Effect of impact energy on yield and damage. Anal. Chem. 78, 1827–1831 (2006)CrossRefGoogle Scholar
  20. 20.
    Rabbani, S., Barber, A.M., Fletcher, J.S., Lockyer, N.P., Vickerman, J.C.: TOF-SIMS with argon gas cluster ion beams: a comparison with C60+. Anal. Chem. 83, 3793–3800 (2011)CrossRefGoogle Scholar
  21. 21.
    Alford, T.L., Feldman, L.C., Mayer, J.W.: Fundamentals of Nanoscale Film Analysis. Springer, Berlin (2007)Google Scholar
  22. 22.
    Nakata, Y., Ninomiya, S., Matsuo, J.: Secondary ion emission from bio-molecular thin films under ion bombardment. Nucl. Inst. Methods Phys. Res. B. 256, 489–492 (2007)CrossRefGoogle Scholar
  23. 23.
    Nakata, Y., Honda, Y., Ninomiya, S., Seki, T., Aoki, T., Matsuo, J.: Matrix-free high-resolution imaging mass spectrometry with high-energy ion projectiles. J. Mass Spectrom. 44, 128–136 (2009)CrossRefGoogle Scholar
  24. 24.
    Hedin, A., Hakansson, P., Sundqvist, B.: Phys. Rev. B. 31, 1780–1787 (1985)CrossRefGoogle Scholar
  25. 25.
    Sigmund, P.: Fundamental Processes in Sputtering of Atoms and Molecules, p. 675. Copenhagen, Kongelige Danske videnskabernes selskab (1993)Google Scholar
  26. 26.
    Jones, B.N., Matsuo, J., Nakata, Y., Yamada, H., Watts, J., Hinder, S., Palitsin, V., Webb, R.: Comparison of MeV monomer ion and keV cluster ToF-SIMS. Surf. Interface Anal. 43, 249–252 (2011)CrossRefGoogle Scholar
  27. 27.
    Nakata, Y., Honda, Y., Ninomiya, S., Seki, T., Aoki, T., Matsuo, J.: Yield enhancement of molecular ions with MeV ion-induced electronic excitation. Appl. Surf. Sci. 255, 1591–1594 (2008)CrossRefGoogle Scholar
  28. 28.
    Jeromel, L., Siketić, Z., Ogrinc - Potočnik, N., Vavpetič, P., Rupnik, Z., Bučar, K., Pelicon, P.: Development of mass spectrometry by high energy focused heavy ion: MeV - SIMS with 8 MeV Cl7+ beam. Nucl. Inst. Methods Phys. Rev. B. 332, 22–27 (2014)CrossRefGoogle Scholar
  29. 29.
    Pelicon, P., Podaru, N.C., Vavpetič, P., Jeromel, L., Ogrinc Potičnik, N., Ondračka, S., Gottdang, A., Mous, D.M.: A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute. Nucl. Inst. Methods Phys. Res. B. 332, 229–233 (2014)CrossRefGoogle Scholar
  30. 30.
    Vavpetič, P., Vogel-Mikuš, K., Jeromel, L., Ogrinc-Potočnik, N., Pongrac, P., Drobne, D., Pipan Tkalec, Ž., Novak, S., Kos, M., Koren, Š., Regvar, M., Pelicon, P.: Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe. Nucl. Inst. Methods Phys. Res. B. 348, 147–151 (2015)CrossRefGoogle Scholar
  31. 31.
    Detterbeck, A., Pongrac, P., Rensch, S., Reuscher, S., Pečovnik, M., Vavpetič, P., Pelicon, P., Holzheu, S., Kraemer, U., Clemens, S.: Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation. New Phytol. 211, 1241–1254 (2016)CrossRefGoogle Scholar
  32. 32.
    Vavpetič, P., Pelicon, P., Vogel-Mikuš, K., Grlj, N., Pongrac, P., Jeromel, L., Ogrinc - Potočnik, N., Regvar, M.: Micro-PIXE on thin plant tissue samples in frozen hydrated state: a novel addition to JSI nuclear microprobe. Nucl. Inst. Methods Phys. Res. B. 306, 140–143 (2013)CrossRefGoogle Scholar
  33. 33.
    Siketić, Z., Bogdanović Radović, I., Jakšić, M., Popović Hadžija, M., Hadžija, M.: Submicron mass spectrometry imaging of single cells by combined use of mega electron volt time-of-flight secondary ion mass spectrometry and scanning transmission ion microscopy. Appl. Phys. Lett. 107, 093702 (2015)Google Scholar
  34. 34.
    Cloete, K.J., Jenčič, B., Šmit, Ž., Kelemen, M., Mkentanee, K., Pelicon, P.: Detection of lithium in scalp hair by time - of - flight secondary ion mass spectrometry with high energy (MeV) primary ions. Anal. Methods. 9, 5249–5253 (2017)CrossRefGoogle Scholar
  35. 35.
    Jenčič, B., Jeromel, L., Ogrinc - Potočnik, N., Vogel - Mikuš, K., Kovačec, E., Regvar, M., Siketić, Z., Vavpetič, P., Rupnik, Z., Bučar, K., Kelemen, M., Kovač, J., Pelicon, P.: Molecular imaging of cannabis leaf tissue with MeV-SIMS method. Nucl. Inst. Methods Phys. Res. B. 371, 205–210 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Jožef Stefan InstituteLjubljanaSlovenia
  2. 2.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations