Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1750–1757 | Cite as

Structure, Anion, and Solvent Effects on Cation Response in ESI-MS

  • Isaac Omari
  • Parmissa Randhawa
  • Jaiya Randhawa
  • Jenny Yu
  • J. Scott McIndoeEmail author
Research Article


The abundance of an ion in an electrospray ionization mass spectrum is dependent on many factors beyond just solution concentration. Even in cases where the analytes of interest are permanently charged (under study here are ammonium and phosphonium ions) and do not rely on protonation or other chemical processes to acquire the necessary charge, factors such as cation structure, molecular weight, solvent, and the identity of the anion can affect results. Screening of a variety of combinations of cations, anions, and solvents provided insight into some of the more important factors. Rigid cations and anions that conferred high conductivity tended to provide the highest responses. The solvent that most closely reflected actual solution composition was acetonitrile, while methanol, acetonitrile/water, and dichloromethane produced a higher degree of discrimination between different ions. Functional groups that had affinity for the solvent tended to depress response. These observations will provide predictive power when accounting for analytes that for reasons of high reactivity can not be isolated.


Electrospray ionization Response factor Structure Counterions Solvent effects 



JSM thanks NSERC (Discovery and Discovery Accelerator Supplement) for operational funding and CFI, BCKDF, and the University of Victoria for infrastructural support.

Supplementary material

13361_2019_2252_MOESM1_ESM.docx (437 kb)
ESM 1 (DOCX 437 kb)


  1. 1.
    Zhou, S., Cook, K.D.: A mechanistic study of electrospray mass spectrometry: charge gradients within electrospray droplets and their influence on ion response. J. Am. Soc. Mass Spectrom. 12, 206–214 (2001)CrossRefPubMedGoogle Scholar
  2. 2.
    Cech, N.B., Enke, C.G.: Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrom. Rev. 20, 362–387 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    Amad, M.H., Cech, N.B., Jackson, G.S., Enke, C.G.: Importance of gas-phase proton affinities in determining the electrospray ionization response for analytes and solvents. J. Mass Spectrom. 35, 784–789 (2000)CrossRefPubMedGoogle Scholar
  4. 4.
    Chalcraft, K.R., Lee, R., Mills, C., Britz-McKibbin, P.: Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards. Anal. Chem. 81, 2506–2515 (2009)CrossRefPubMedGoogle Scholar
  5. 5.
    Kiontke, A., Oliveira-Birkmeier, A., Opitz, A., Birkemeyer, C.: Electrospray ionization efficiency is dependent on different molecular descriptors with respect to solvent pH and instrumental configuration. PLoS One. 11, e0167502 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Henriksen, T., Juhler, R.K., Svensmark, B., Cech, N.B.: The relative influences of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS). J. Am. Soc. Mass Spectrom. 16, 446–455 (2005)CrossRefPubMedGoogle Scholar
  7. 7.
    Mandra, V.J., Kouskoura, M.G., Markopoulou, C.K.: Using the partial least squares method to model the electrospray ionization response produced by small pharmaceutical molecules in positive mode. Rapid Commun. Mass Spectrom. 29, 1661–1675 (2015)CrossRefPubMedGoogle Scholar
  8. 8.
    Cheng, Z.L., Siu, K.W.M., Guevremont, R., Berman, S.S.: Electrospray mass spectrometry: a study on some aqueous solutions of metal salts☆. J. Am. Soc. Mass Spectrom. 3, 281–288 (1992)CrossRefPubMedGoogle Scholar
  9. 9.
    Kebarle, P., Peschke, M.: On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Anal. Chim. Acta. 406, 11–35 (2000)CrossRefGoogle Scholar
  10. 10.
    Fenn, J.B.: Ion formation from charged droplets: roles of geometry, energy, and time. J. Am. Soc. Mass Spectrom. 4, 524–535 (1993)CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, G., Cole, R.B.: Charged residue versus ion evaporation for formation of alkali metal halide cluster ions in ESI. Anal. Chim. Acta. 406, 53–65 (2000)CrossRefGoogle Scholar
  12. 12.
    Tang, L., Kebarle, P.: Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal. Chem. 65, 3654–3668 (1993)CrossRefGoogle Scholar
  13. 13.
    Fei, Z., Zhu, D.-R., Yan, N., Scopelliti, R., Katsuba, S.A., Laurenczy, G., Chisholm, D.M., McIndoe, J.S., Seddon, K.R., Dyson, P.J.: Electrostatic and non-covalent interactions in dicationic imidazolium-sulfonium salts with mixed anions. Chem. - A Eur. J. 20, 4273–4283 (2014)CrossRefGoogle Scholar
  14. 14.
    Bini, R., Bortolini, O., Chiappe, C., Pieraccini, D., Siciliano, T.: Development of cation/anion “interaction” scales for ionic liquids through ESI-MS measurements. J. Phys. Chem. B. 111, 598–604 (2007)CrossRefPubMedGoogle Scholar
  15. 15.
    Bruins, A.P.: Mechanistic aspects of electrospray ionization. J. Chromatogr. A. 794, 345–357 (1998)CrossRefGoogle Scholar
  16. 16.
    Kebarle, P., Tang, L.: From ions in solution to ions in the gas phase - the mechanism of electrospray mass spectrometry. Anal. Chem. 65, 972A–986A (1993)Google Scholar
  17. 17.
    Cole, R.B., Harrata, A.K.: Charge-state distributuion and electric-discharge suppression in negative-ion electrospray mass spectrometry using/chlorinated solvents. Rapid Commun. Mass Spectrom. 6, 536–539 (1992)CrossRefGoogle Scholar
  18. 18.
    Cole, R.B., Harrata, A.K.: Solvent effect on analyte charge state, signal intensity, and stability in negative ion electrospray mass spectrometry; implications for the mechanism of negative ion formation. J. Am. Soc. Mass Spectrom. 4, 546–556 (1993)CrossRefPubMedGoogle Scholar
  19. 19.
    Stassen, H.K., Ludwig, R., Wulf, A., Dupont, J.: Imidazolium salt ion pairs in solution. Chem. - A Eur. J. 21, 8324–8335 (2015)CrossRefGoogle Scholar
  20. 20.
    Pape, J., Vikse, K.L., Janusson, E., Taylor, N., McIndoe, J.S.: Solvent effects on surface activity of aggregate ions in electrospray ionization. Int. J. Mass Spectrom. 373, 66–71 (2014)CrossRefGoogle Scholar
  21. 21.
    Bortolini, O., Chiappe, C., Ghilardi, T., Massi, A., Pomelli, C.S.: Dissolution of metal salts in bis(trifluoromethylsulfonyl)imide-based ionic liquids: studying the affinity of metal cations toward a “weakly coordinating” anion. J. Phys. Chem. A. 119, 5078–5087 (2015)CrossRefPubMedGoogle Scholar
  22. 22.
    Hunt, P.A.: Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids? . J. Phys. Chem. B. 111, 4844–4853 (2007)CrossRefPubMedGoogle Scholar
  23. 23.
    Kohagen, M., Brehm, M., Lingscheid, Y., Giernoth, R., Sangoro, J., Kremer, F., Naumov, S., Iacob, C., Kärger, J., Valiullin, R., Kirchner, B.: How hydrogen bonds influence the mobility of imidazolium-based ionic liquids. A combined theoretical and experimental study of 1-n-butyl-3-methylimidazolium bromide. J. Phys. Chem. B. 115, 15280–15288 (2011)CrossRefPubMedGoogle Scholar
  24. 24.
    Izgorodina, E.I., MacFarlane, D.R.: Nature of hydrogen bonding in charged hydrogen-bonded complexes and imidazolium-based ionic liquids. J. Phys. Chem. B. 115, 14659–14667 (2011)CrossRefPubMedGoogle Scholar
  25. 25.
    Katsyuba, S.A., Vener, M.V., Zvereva, E.E., Fei, Z., Scopelliti, R., Laurenczy, G., Yan, N., Paunescu, E., Dyson, P.J.: How strong is hydrogen bonding in ionic liquids? Combined X-ray crystallographic, infrared/Raman spectroscopic, and density functional theory study. J. Phys. Chem. B. 117, 9094–9105 (2013)CrossRefPubMedGoogle Scholar
  26. 26.
    Fumino, K., Reimann, S., Ludwig, R.: Probing molecular interaction in ionic liquids by low frequency spectroscopy: coulomb energy, hydrogen bonding and dispersion forces. Phys. Chem. Chem. Phys. 16, 21903–21929 (2014)CrossRefPubMedGoogle Scholar
  27. 27.
    Dhumal, N.R., Noack, K., Kiefer, J., Kim, H.J.: Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. A. 118, 2547–2557 (2014)CrossRefPubMedGoogle Scholar
  28. 28.
    Skarmoutsos, I., Welton, T., Chemical, P.H.-P.C.: U.: The importance of timescale for hydrogen bonding in imidazolium chloride ionic liquids. Phys. Chem. Chem. Phys. 16, 3675–3685 (2014)CrossRefPubMedGoogle Scholar
  29. 29.
    Janusson, E., Hesketh, A.V., Bamford, K.L., Hatlelid, K., Higgins, R., McIndoe, J.S.: Spatial effects on electrospray ionization response. Int. J. Mass Spectrom. 388, 1–8 (2015)CrossRefGoogle Scholar
  30. 30.
    Song, L.D., Rosen, M.J.: Surface properties, micellization, and premicellar aggregation of gemini surfactants with rigid and flexible spacers. Langmuir. 12, 1149–1153 (1996)CrossRefGoogle Scholar
  31. 31.
    Zook, D.R., Bruins, A.P.: On cluster ions, ion transmission, and linear dynamic range limitations in electrospray (ionspray) mass spectrometry. Int. J. Mass Spectrom. Ion Process. 162, 129–147 (1997)CrossRefGoogle Scholar
  32. 32.
    Yunker, L.P.E., Ahmadi, Z., Logan, J.R., Wu, W., Li, T., Martindale, A., Oliver, A.G., McIndoe, J.S.: Real-time mass spectrometric investigations into the mechanism of the Suzuki–Miyaura reaction. Organometallics. 37, 4297–4308 (2018)CrossRefGoogle Scholar
  33. 33.
    Belli, R.G., Wu, Y., Ji, H., Joshi, A., Yunker, L.P.E., McIndoe, J.S., Rosenberg, L.: Competitive ligand exchange and dissociation in Ru indenyl complexes. Inorg. Chem. 58, 747–755 (2019)CrossRefPubMedGoogle Scholar
  34. 34.
    Luo, J., Wu, Y., Zijlstra, H.S., Harrington, D.A., McIndoe, J.S.: Mass transfer and convection effects in small-scale catalytic hydrogenation. Catal. Sci. Technol. 7, 2609–2615 (2017)CrossRefGoogle Scholar
  35. 35.
    Yan, X., Sokol, E., Li, X., Li, G., Xu, S., Cooks, R.G.: On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. Angew. Chemie Int. Ed. 53, 5931–5935 (2014)CrossRefGoogle Scholar
  36. 36.
    Medeiros, G.A., da Silva, W.A., Bataglion, G.A., Ferreira, D.A.C., de Oliveira, H.C.B., Eberlin, M.N., Neto, B.A.D.: Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). Chem. Commun. 50, 338–340 (2014)CrossRefGoogle Scholar
  37. 37.
    Rauf, W., Brown, J.M.: Reactive intermediates in catalytic alkenylation; pathways for Mizoroki–Heck, oxidative Heck and Fujiwara–Moritani reactions. Chem. Commun. 49, 8430 (2013)CrossRefGoogle Scholar
  38. 38.
    Ingram, A.J., Boeser, C.L., Zare, R.N.: Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 7, 39–55 (2016)CrossRefPubMedGoogle Scholar
  39. 39.
    Theron, R., Wu, Y., Yunker, L.P.E., Hesketh, A.V., Pernik, I., Weller, A.S., McIndoe, J.S.: Simultaneous orthogonal methods for the real-time analysis of catalytic reactions. ACS Catal. 6, 6911–6917 (2016)CrossRefGoogle Scholar
  40. 40.
    Chantooni, M.K., Kolthoff, I.M.: Hydration of ions in acetonitrile. J. Am. Chem. Soc. 89, 1582–1586 (1967)CrossRefGoogle Scholar
  41. 41.
    De Vos, N., Maton, C., Stevens, C.V.: Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem. 1, 1258–1270 (2014)CrossRefGoogle Scholar
  42. 42.
    Abbott, A.P., Mckenzie, K.J.: Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 8, 4265–4279 (2006)CrossRefPubMedGoogle Scholar
  43. 43.
    Rohner, T.C., Lion, N., Girault, H.H.: Electrochemical and theoretical aspects of electrospray ionisation. Phys. Chem. Chem. Phys. 6, 3056–3068 (2004)CrossRefGoogle Scholar
  44. 44.
    Liu, P., Lu, M., Zheng, Q., Zhang, Y., Dewald, H.D., Chen, H.: Recent advances of electrochemical mass spectrometry. Analyst. 138, 5519 (2013)CrossRefPubMedGoogle Scholar
  45. 45.
    Kay, R.L., Zawoyski, C., Evans, D.F.: The conductance of the symmetrical tetraalkylammonium halides and picrates in methanol at 25 and 10° 1. J. Phys. Chem. 69, 4208–4215 (1965)CrossRefGoogle Scholar
  46. 46.
    Evans, D.F., Zawoyski, C., Kay, R.L.: The conductance of the symmetrical tetraalkylammonium halides and picrates in acetonitrile at 25° 1. J. Phys. Chem. 69, 3878–3885 (1965)CrossRefGoogle Scholar
  47. 47.
    Kay, R.L., Hawes, J.L.: The association of cesium chloride in anhydrous methanol at 25°. J. Phys. Chem. 69, 2787–2788 (1965)CrossRefGoogle Scholar
  48. 48.
    Miller, P.E., Denton, M.B.: The transmission properties of an RF-only quadrupole mass filter. Int. J. Mass Spectrom. Ion Process. 72, 223–238 (1986)CrossRefGoogle Scholar
  49. 49.
    Turecek, F., Gu, M., Shaffer, S.A.: Novel tandem quadrupole-acceleration-deceleration mass spectrometer for neutralization-reionization studies. J. Am. Soc. Mass Spectrom. 3, 493–501 (1992)CrossRefPubMedGoogle Scholar
  50. 50.
    Vikse, K.L., Ahmadi, Z., Manning, C.C., Harrington, D.A., McIndoe, J.S.: Powerful insight into catalytic mechanisms through simultaneous monitoring of reactants, products, and intermediates. Angew. Chemie Int. Ed. 50, 8304–8306 (2011)CrossRefGoogle Scholar
  51. 51.
    Ahmadi, Z., Yunker, L.P.E., Oliver, A.G., McIndoe, J.S.: Mechanistic features of the copper-free Sonogashira reaction from ESI-MS. Dalt. Trans. 44, 20367–20375 (2015)CrossRefGoogle Scholar
  52. 52.
    Ahmadi, Z., McIndoe, J.S.: A mechanistic investigation of hydrodehalogenation using ESI-MS. Chem. Commun. 49, 11488 (2013)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VictoriaVictoriaCanada

Personalised recommendations