Journal of The American Society for Mass Spectrometry

, Volume 30, Issue 9, pp 1558–1564 | Cite as

UV–Vis Photodissociation Action Spectroscopy on Thermo LTQ-XL ETD and Bruker amaZon Ion Trap Mass Spectrometers: a Practical Guide

  • Andy Dang
  • Joseph A. Korn
  • James Gladden
  • Brandon Mozzone
  • František TurečekEmail author
Research Article


We report automated procedures for multiple tandem mass spectra acquisition allowing UV–Vis photodissociation action spectroscopy measurements of ions and radicals. The procedures were developed for two commercial ion trap mass spectrometers and applied to collision-induced and electron–transfer dissociation tandem mass spectrometry modes of ion generation.


Linear ion trap 3-D ion trap Photodissociation UV–vis action spectroscopy LabVIEW software Laser alignment 



Financial support of this research has been provided by the NSF Chemistry Division (Grant CHE-1661815). These projects would not have been possible without help and advice from Graeme McAlister and John Syka (Thermo Electron Fisher, San Jose, CA, USA) and Christoph Gebhardt (Bruker Daltonik, GmbH, Bremen, Germany). Thanks are also due to Christopher J. Shaffer and Robert Pepin for technical assistance and contributions

Supplementary material

13361_2019_2229_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1580 kb)


  1. 1.
    Eyler, J.R.: Infrared multiple photo dissociation spectroscopy of ions in Penning traps. Mass Spectrom. Rev. 28, 448–467 (2009)CrossRefGoogle Scholar
  2. 2.
    Polfer, N.C.: Infrared multiple photon dissociation spectroscopy of trapped ions. Chem. Soc. Rev. 40, 2211–2221 (2011)CrossRefGoogle Scholar
  3. 3.
    Antoine, R., Dugourd, P.: UV-visible activation of biomolecular ions. In: Polfer, N.C., Dugourd, P. (eds.) Laser photodissociation and spectroscopy of mass-Separated biomolecular ions, Lecture Notes in Chemistry, vol. 83, pp. 93–116. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Dunbar, R.C.: Photodissociation of the methyl chloride (CH3Cl+) and nitrous oxide (N2O+) cations. J. Am. Chem. Soc. 93, 4354–4358 (1971)CrossRefGoogle Scholar
  5. 5.
    Casassa, M.P., Bomse, D.S., Beauchamp, J.L., Janda, K.C.: Infrared photochemistry of ethylene clusters. J. Chem. Phys. 72, 6805–6806 (1980)CrossRefGoogle Scholar
  6. 6.
    Carlin, T.J., Freiser, B.S.: Multiphoton ionization in Fourier transform mass spectrometry. Anal. Chem. 55, 955–958 (1983)CrossRefGoogle Scholar
  7. 7.
    Bensimon, M., Rapin, J., Gaumann, T.: Comparison of infrared photodissociation in a Fourier transform mass spectrometer with metastable ion decay in a double-focusing mass spectrometer. Int. J. Mass Spectrom. Ion Process. 72, 125–135 (1986)CrossRefGoogle Scholar
  8. 8.
    Willey, K.F., Robbins, D.L., Yeh, C.S., Duncan, M.A.: Laser photodissociation spectroscopy of mass-selected metal clusters. Faraday Discuss. 92, 269–277 (1992)CrossRefGoogle Scholar
  9. 9.
    Kirketerp, M.-B.S., Nielsen, S.B.: Absorption spectrum of isolated tris(2,2′-​bipyridine)ruthenium(II) dications in vacuo. Int. J. Mass Spectrom. 297, 63–66 (2010)CrossRefGoogle Scholar
  10. 10.
    Fujihara, A., Matsumoto, H., Shibata, Y., Ishikawa, H., Fuke, K.: Photodissociation and spectroscopic study of cold protonated dipeptides. J. Phys. Chem. A. 112, 1457–1463 (2008)CrossRefGoogle Scholar
  11. 11.
    Feraud, G., Broquier, M., Dedonder-Lardeux, C., Gregoire, G., Soorkia, S., Jouvet, C.: Photofragmentation spectroscopy of cold protonated aromatic amines in the gas phase. Phys. Chem. Chem. Phys. 16, 5250–5259 (2014)CrossRefGoogle Scholar
  12. 12.
    Kamariotis, A., Boyarkin, O.V., Mercier, S.R., Beck, R.D., Bush, M.F., Williams, E.R., Rizzo, T.R.: Infrared spectroscopy of hydrated amino acids in the gas phase: protonated and lithiated valine. J. Am. Chem. Soc. 128, 905–916 (2006)CrossRefGoogle Scholar
  13. 13.
    Kamrath, M.Z., Garand, E., Jordan, P.A., Leavitt, C.M., Wolk, A.B., Van Stipdonk, M.J., Miller, S.J., Johnson, M.A.: Vibrational characterization of simple peptides using cryogenic infrared photodissociation of H2-tagged, mass-selected ions. J. Am. Chem. Soc. 133, 6440–6448 (2011)CrossRefGoogle Scholar
  14. 14.
    Ly, T., Julian, R.R.: Residue-specific radical-directed dissociation of whole proteins in the gas phase. J. Am. Chem. Soc. 130, 351–358 (2008)CrossRefGoogle Scholar
  15. 15.
    Ledvina, A.R., Beauchene, N.A., McAlister, G.C., Syka, J.E.P., Schwartz, J.C., Griep-Raming, J., Westphall, M.S., Coon, J.J.: Activated-ion electron transfer dissociation improves the ability of electron transfer dissociation to identify peptides in a complex mixture. Anal. Chem. 82, 10068–10074 (2010)CrossRefGoogle Scholar
  16. 16.
    Nguyen, H.T.H., Shaffer, C.J., Ledvina, A., Coon, J.J., Tureček, F.: Serine effects on collision-induced dissociation and photodissociation of peptide cation radicals of the z+● type. Int. J. Mass Spectrom. 378, 20–30 (2015)CrossRefGoogle Scholar
  17. 17.
    Shaffer, C.J., Marek, A., Pepin, R., Slováková, K., Tureček, F.: Combining UV photodissociation with electron transfer for peptide structure analysis. J. Mass Spectrom. 50, 470–475 (2015)CrossRefGoogle Scholar
  18. 18.
    Shaffer, C.J., Pepin, R., Tureček, F.: Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals. J. Mass Spectrom. 50, 1438–1442 (2015)CrossRefGoogle Scholar
  19. 19.
    Nguyen, H.T.H., Shaffer, C.J., Pepin, R., Tureček, F.: UV action spectroscopy of gas-phase peptide radicals. J. Phys. Chem. Lett. 6, 4722–4727 (2015)CrossRefGoogle Scholar
  20. 20.
    Martens, J., Berden, G., Gebhardt, C.R., Oomens, J.: Infrared ion spectroscopy in a modified quadrupole ion trap mass spectrometer at the FELIX free electron laser laboratory. Rev. Sci. Instrum. 87, 103108/1–103108/8 (2016)CrossRefGoogle Scholar
  21. 21.
    Lesslie, M., Lawler, J.T., Dang, A., Korn, J.A., Bím, D., Steinmetz, V., Maitre, P., Tureček, F., Ryzhov, V.: Cytosine radical cation: a gas-phase study combining IRMPD spectroscopy, UV-PD spectroscopy, ion-molecule reactions, and theoretical calculations. ChemPhysChem. 18, 1293–1301 (2017)CrossRefGoogle Scholar
  22. 22.
    Brunet, C., Antoine, R., Allouche, A.-R., Dugourd, P.: Gas phase photo-formation and vacuum UV photofragmentation spectroscopy of tryptophan and tyrosine radical-containing peptides. J. Phys. Chem. A. 115, 8933–8939 (2011)CrossRefGoogle Scholar
  23. 23.
    Brodbelt, J.S.: Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem. Soc. Rev. 43, 2757–2783 (2014)CrossRefGoogle Scholar
  24. 24.
    Cannon, J.R., Holden, D.D., Brodbelt, J.S.: Hybridizing ultraviolet photodissociation with electron transfer dissociation for intact protein characterization. Anal. Chem. 86, 10970–10977 (2014)CrossRefGoogle Scholar
  25. 25.
    Barbatti, M., Aquino, A.J.A., Lischka, H.: The UV absorption of nucleobases: semi-classical ab initio spectra simulations. Phys. Chem. Chem. Phys. 12, 4959–4967 (2010)CrossRefGoogle Scholar
  26. 26.
    Dang, A., Liu, Y., Tureček, F.: UV-vis action spectroscopy of guanine, 9-methylguanine and 2′-deoxyguanosine cation radicals in the gas phase. J. Phys. Chem. A. 123.
  27. 27.
    Liu, Y., Korn, J.A., Dang, A., Turecek, F.: Hydrogen-rich cation radicals of DNA dinucleotides. Generation and structure elucidation by UV-vis action spectroscopy. J. Phys. Chem. B. 122, 9665–9680 (2018)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA

Personalised recommendations