Triboionization: a Novel Ionization Method by Peeling of Cohesive Substances for Mass Spectrometry

  • Natsuhiko SugimuraEmail author
  • Yuki Watabe
  • Toshimichi Shibue
Research Article


A novel ionization/sampling method termed triboionization was developed. Triboionization is an ionization method that only uses cohesive substances, such as food wrap or sticky tape, and does not require an electrode, electric power supply, heat source, light source, radiation, or gas, unlike most other conventional ambient ionization methods. In this study, the sample compound attached to adhesive tape or plastic wrap was quickly peeled off at a distance of approximately 2 cm from the atmospheric interface of a mass spectrometer. All of the five types of food wrap and 13 types of adhesive tape tested successfully ionized caffeine. Nine out of ten model compounds were detected as the corresponding molecular ions in the positive or negative mode by this ionizing contrivance using an oriented polypropylene adhesive tape. The detected molecular ions were typically protonated molecules or sodium adducts in the positive mode or deprotonated molecules in the negative mode. The elemental compositions of the observed ions were confirmed within 5 ppm by high-resolution mass spectrometry. The triboionization phenomenon was considered to depend on physical and electronic events caused by peeling off a cohesive substance. Triboionization is able to provide a compact ion source using only mechanical mechanisms. Additionally, triboionization allows sticky tape to be used as a convenient sampling device for surface analysis.


Triboionization Ionization Tribo Sticky tape Adhesive Food wrap Adhesive tape Van der Waals force Coulomb force Surface analysis Triboluminescence 



The authors deeply grateful to Professor Joseph A. Loo of University of California Los Angeles for useful comments and editorial suggestions.

Supplementary material

13361_2019_2220_MOESM2_ESM.docx (1.8 mb)
ESM 2 (DOCX 1893 kb)


  1. 1.
    Brunnee, C.: 50 years of MAT in Bremen. Rapid Commum. Mass Spectrom. 11, 694–707 (1997)Google Scholar
  2. 2.
    Doerr, A., Finkelstein, J., Jarchum, I., Goodman, C., Dekker, B.: Nature Milestones Mass Spectrometry. Springer Nature, New York (2015) Accessed December 20, 2018Google Scholar
  3. 3.
    Tate, J.T., Smith, P.T.: Ionization potentials and probabilities for the formation of multiply charged ions in the alkali vapors and in krypton and xenon. Phys. Rev. 46(9), 0773–0776 (1934)Google Scholar
  4. 4.
    Munson, M.S.B., Field, F.H.: Chemical ionization mass spectrometry. I. general introduction. J. Am. Chem. Soc. 88(12), 2621–2630 (1966)Google Scholar
  5. 5.
    Barber, M., Bordoli, R.S., Sedgwick, R.D., Tyler, A.N.: Fast atom bombardment of solids as an ion-source in mass-spectrometry. Nature. 293(5830), 270–275 (1981)Google Scholar
  6. 6.
    Barber, M., Bordoli, R.S., Elliott, G.J., Sedgwick, R.D., Tyler, A.N.: Fast atom bombardment mass-spectrometry. Anal. Chem. 54(4), A645–A657 (1982)Google Scholar
  7. 7.
    Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., Whitehouse, C.M.: Electrospray ionization for mass-spectrometry of large biomolecules. Science. 246(4926), 64–71 (1989)Google Scholar
  8. 8.
    Yamashita, M., Fenn, J.B.: Electrospray ion-source - another variation on the free-jet theme. J. Phys. Chem. 88(20), 4451–4459 (1984)Google Scholar
  9. 9.
    Monge, M.E., Harris, G.A., Dwivedi, P., Fernández, F.M.: Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem. Rev. 113, 2269–2308 (2013)Google Scholar
  10. 10.
    Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306(5695), 471–473 (2004)Google Scholar
  11. 11.
    McEwen, C.N., McKay, R.G., Larsen, B.S.: Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal. Chem. 77(23), 7826–7831 (2005)Google Scholar
  12. 12.
    Haapala, M., Pól, J., Saarela, V., Arvola, V., Kotiaho, T., Ketola, A.R., Franssila, S., Kauppila, J.T., Kostiainen, R.: Desorption atmospheric pressure photoionization. Anal. Chem. 79(20), 7867–7872 (2007)Google Scholar
  13. 13.
    Cody, R.B., Laramée, J.A., Durst, H.D.: Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem. 77(8), 2297–2302 (2005)Google Scholar
  14. 14.
    Gross, J.H.: Direct analysis in real time—a critical review on DART-MS. Anal. Bioanal. Chem. 406(1), 63–80 (2014)Google Scholar
  15. 15.
    Pavlovich, M.J., Dunn, E.E., Hall, A.B.: Chemometric brand differentiation of commercial spices using direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 30(9), 1123–1130 (2016)Google Scholar
  16. 16.
    Rajchl, A., Prchalová, J., Kružík, V., Ševčík, R., Čížková, H.: Evaluation of ice-tea quality by DART-TOF/MS. J. Mass Spectrom. 50(11), 1214–1221 (2015)Google Scholar
  17. 17.
    Ackerman, L.K., Noonan, G.O., Begley, T.H.: Assessing direct analysis in real-time-mass spectrometry (DART-MS) for the rapid identification of additives in food packaging. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 26(12), 1611–1618 (2009)Google Scholar
  18. 18.
    Bridoux, M.C., Schwarzenberg, A., Schramm, S., Cole, R.B.: Combined use of direct analysis in real-time/Orbitrap mass spectrometry and micro-Raman spectroscopy for the comprehensive characterization of real explosive samples. Anal. Bioanal. Chem. 408(21), 5677–5687 (2016)Google Scholar
  19. 19.
    Lesiak, A.D., Musah, R.A.: Application of ambient ionization high resolution mass spectrometry to determination of the botanical provenance of the constituents of psychoactive drug mixtures. Forensic Sci. Int. 266, 271–280 (2016)Google Scholar
  20. 20.
    Pagnotti, V.S., Chubatyi, N.D., McEwen, C.N.: Solvent assisted inlet ionization: an ultrasensitive new liquid introduction ionization method for mass spectrometry. Anal. Chem. 83, 3891–3895 (2011)Google Scholar
  21. 21.
    Pagnotti, V.S., Inutan, E.D., Marshall, D.D., McEwen, C.N.: Inlet ionization: a new highly sensitive approach for liquid chromatography/mass spectrometry of small and large molecules. Anal. Chem. 83, 7591–7594 (2011)Google Scholar
  22. 22.
    Trimpin, S., Lu, I.-C., Rauschenbach, S., Hoang, K., Wang, B., Chubaty, N.D., Zhang, W.-J., Inutan, E.D., Pophristic, M., Sidorenko, A., McEwen, C.N.: Spontaneous charge separation and sublimation process are ubiquitous in nature and in ionization process in mass spectrometry. J. Am. Soc. Mass Spectrom. 29, 304–315 (2018)Google Scholar
  23. 23.
    Trimpin, S.: “Magic” ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 27, 4–21 (2016)Google Scholar
  24. 24.
    Izutani, C., Fukagawa, D., Miyashita, M., Ito, M., Sugimura, N., Aoyama, R., Gotoh, T., Shibue, T., Igarashi, Y., Oshio, H.: The materials characterization central laboratory: an open-ended laboratory program for fourth-year undergraduate and graduate students. J. Chem. Educ. 93(9), 1667–1670 (2016)Google Scholar
  25. 25.
    Sugimura, N., Furuya, A., Yatsu, T., Shibue, T.: Comparison of the applicability of mass spectrometer ion sources using a polarity–molecular weight scattergram with a 600 sample in-house chemical library. Eur. J. Mass Spectrom. 21, 91–96 (2015)Google Scholar
  26. 26.
    Jha, P., Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence. 29, 977–993 (2014)Google Scholar
  27. 27.
    Aiken, A.C., DeCarlo, P.F., Jimenez, J.L.: Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Anal. Chem. 79(21), 8350–8358 (2007)Google Scholar
  28. 28.
    Sugimura, N., Furuya, A., Yatsu, T., Shibue, T.: Prediction of adducts on positive mode electrospray ionization mass spectrometry: proton/sodium selectivity in methanol solutions. Eur. J. Mass Spectrom. 21, 725–731 (2015)Google Scholar
  29. 29.
    Baytekin, T.H., Patashinski, Z.A., Branicki, M., Baytekin, B., Soh, S., Grzybowski, A.B.: The mosaic of surface charge in contact electricfixation. Science. 333, 308–312 (2011)Google Scholar
  30. 30.
    Deryagin, B.V.: Adhesion of solids. Consultants Bureau, New York (1978)Google Scholar
  31. 31.
    Harper, W.R.: Contact and frictional electrification. Laplacian Press, Morgan Hill (1998)Google Scholar
  32. 32.
    Walton, A.J.: Triboluminescence. Adv. Phys. 26(6), 887–948 (1977)Google Scholar
  33. 33.
    Harvey, N.E.: The luminescence of adhesive tape. Science. 89(2316), 460–461 (1939)Google Scholar
  34. 34.
    Zhenyi, M., Fan, J., Dickinson, J.T.: Properties of the photon emission accompanying the peeling of a pressure-sensitive adhesive. J. Adhesion. 25(1), 63–77 (1988)Google Scholar
  35. 35.
    Camara, G.C., Escobar, V.J., Hird, R.J., Putterman, J.S.: Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape. Nature. 455(23), 1089–1093 (2008)Google Scholar
  36. 36.
    Alcock, G.W., Hayward, J.E., Mile, B., Ward, B.: Chemical reactions of methane in a triboelectric discharge. Can. J. Chem. 50, 3813–3820 (1972)Google Scholar
  37. 37.
    Kendall, K.: Thin-film peeling—the elastic term. J. Phys. D. 8, 1449–1452 (1975)Google Scholar
  38. 38.
    Chikina, I., Gay, C.: Cavitation in adhesives. Phys. Rev. Lett. 85(21), 4546–4549 (2000)Google Scholar
  39. 39.
    Urahama, Y.: Effect of peel load on stringiness phenomena and peel speed of pressure-sensitive adhesive tape. J. Adhesion. 31(1), 47–58 (1989)Google Scholar
  40. 40.
    Black, R.A., Hallett, J.: The mystery of cloud electrification. Am. Sci. 86, 526–534 (1998)Google Scholar
  41. 41.
    McCarty, L., Whitesides, G.M.: Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008)Google Scholar
  42. 42.
    Alexander, A.J.: Interfacial ion-transfer mechanism for the intense luminescence observed when opening self-seal envelops. Langmuir. 28, 13294–13299 (2012)Google Scholar
  43. 43.
    Mächler, L., Brennwald, S.M., Tyroller, L., Livingstone, M.D., Kipfer, R.: Conquering the outdoors with on-site mass spectrometry. Chimia. 68, 155–159 (2014)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Materials Characterization Central LaboratoryWaseda UniversityTokyoJapan

Personalised recommendations