Advertisement

[2.2]Paracyclophane bis(pyridine)-based metallosupramolecular rhombs in the gas phase: Competitive cleavage of non-covalent and weak covalent bonds

  • Yvonne Lorenz
  • Jana Anhäuser
  • Arne Lützen
  • Marianne EngeserEmail author
Focus: Honoring Helmut Schwarz's Election to the National Academy of Sciences: Research Article

Abstract

The gas-phase fragmentation behavior of self-assembled metallo-supramolecular rhombs based on an unusual chiral [2.2]paracyclophane bis(pyridine) ligand is studied by collision-induced dissociation mass spectrometry. The fragmentation patterns strongly depend on the charge state of the respective mass-selected aggregate. For the doubly charged ions, simple symmetric fragmentation is observed in full accordance with previous results reported for related metallo-supramolecular species. The triply charged species cleaves unsymmetrically which can be rationalized by a preferred formation of ions with low charge density. CID of the quadruply charged rhomb reveals a complex fragmentation. Besides ligand oxidation to the radical cation, facile cleavage of the central covalently bound part of the [2.2]paracyclophane ligand takes place which is even preferred over rupture of the weak dative pyridine-Pd bond.

Keywords

Metallo-supramolecular chemistry Weak covalent bonds Chiral Collision-induced dissociation Self-assembly Rhombs 

Notes

Acknowledgements

We thank the Studienstiftung des deutschen Volkes for a doctoral scholarship and the Bonn International Graduate School of Chemistry for an international research scholarship (J.A.), and the Deutsche Forschungsgemeinschaft (SFB 813) for financial support.

References

  1. 1.
    Chakrabarty, R., Mukherjee, P.S., Stang, P.J.: Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Amouri, H., Desmarets, C., Moussa, J.: Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. Chem. Rev. 112, 2015–2041 (2012)CrossRefPubMedGoogle Scholar
  3. 3.
    Debata, N.B., Tripathy, D., Chand, D.K.: Self-assembled coordination complexes from various palladium(II) components and bidentate or polydentate ligands. Coord. Chem. Rev. 256, 1831–1945 (2012)CrossRefGoogle Scholar
  4. 4.
    Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRefPubMedGoogle Scholar
  5. 5.
    Cook, T.R., Stang, P.J.: Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem. Rev. 115, 7001–7045 (2015)CrossRefPubMedGoogle Scholar
  6. 6.
    Winter, A., Schubert, U.S.: Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 45, 5311–5357 (2016) and references cited thereinCrossRefPubMedGoogle Scholar
  7. 7.
    Saha, M.L., Schmittel, M.: From 3-fold completive self-sorting of a nine-component library to a seven-component scalene quadrilateral. J. Am. Chem. Soc. 135, 17743–17746 (2013)CrossRefPubMedGoogle Scholar
  8. 8.
    Wang, S.-Y., Fu, J.-H., Liang, Y.-P., He, Y.-J., Chen, Y.-S., Chan, Y.-T.: Metallo-supramolecular self-assembly of a multicomponent ditrigon based on complementary Terpyridine ligand pairing. J. Am. Chem. Soc. 138, 3651–3654 (2016)CrossRefPubMedGoogle Scholar
  9. 9.
    Yao, Y., Chakraborty, S., Zhu, S., Endres, K.K., Xie, T.-Z., Hong, W., Manandhar, E., Moorefield, C.N., Wesdemiotis, C., Newkome, G.R.: Stepwise, multicomponent assembly of a molecular trapezoid possessing three different metals. Chem. Commun. 53, 8038–8041 (2017)CrossRefGoogle Scholar
  10. 10.
    Seperpour, H., Lal Saha, M., Stang, P.J.: Fe–Pt twisted heterometallic bicyclic supramolecules via multicomponent self-assembly. J. Am. Chem. Soc. 139, 2553–2556 (2017)CrossRefGoogle Scholar
  11. 11.
    Osowska, K., Miljanić, O.S.: Kinetic and thermodynamic self-sorting in synthetic systems. Synlett (12), 1643–1648 (2011).  https://doi.org/10.1055/s-0030-1260815
  12. 12.
    Safont-Sempere, M.M., Fernández, G., Würthner, F.: Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011)CrossRefPubMedGoogle Scholar
  13. 13.
    Lal Saha, M., Schmittel, M.: Degree of molecular self-sorting in multicomponent systems. Org. Biomol. Chem. 10, 4651–4684 (2012)CrossRefGoogle Scholar
  14. 14.
    He, Z., Jiang, W., Schalley, C.A.: Intergrative self-sorting: a versatile strategy for the construction of complex supramolecular architectures. Chem. Soc. Rev. 44, 779–789 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    Wei, P., Yan, X., Huang, F.: Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem. Soc. Rev. 44, 815–832 (2015)CrossRefPubMedGoogle Scholar
  16. 16.
    Angurell, I., Ferrer, M., Gutiérrez, A., Martínez, M., Rodríguez, L., Rossell, O., Engeser, M.: Antisymbiotic self-assembly and dynamic behavior of metallamacrocycles with allylic corners. Chem. Eur. J. 16, 13960–13964 (2010)CrossRefPubMedGoogle Scholar
  17. 17.
    Angurell, I., Ferrer, M., Gutiérrez, A., Martínez, M., Rocamora, M., Rodríguez, L., Rossell, O., Lorenz, Y., Engeser, M.: Kinetico-mechanistic insights on the assembling dynamics of allyl-cornered metallacycles: the Pt-Npy bond is the keystone. Chem. Eur. J. 20, 14473–14487 (2014)CrossRefPubMedGoogle Scholar
  18. 18.
    Schalley, C.A.: Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom. Rev. 20, 253–309 (2001)CrossRefPubMedGoogle Scholar
  19. 19.
    Yamaguchi, K.: Cold-spray ionization mass spectrometry: principle and applications. J. Mass Spectrom. 38, 473–490 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    Schalley, C.A., Springer, A.: Mass spectrometry and gas phase chemistry of non-covalent complexes. Wiley, New York (2009)Google Scholar
  21. 21.
    Cera, L., Schalley, C.A.: Supramolecular reactivity in the gas phase: investigating the intrinsic properties of non-covalent complexes. Chem. Soc. Rev. 43, 1800–1812 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    Wesdemiotis, C.: Multidimensional mass spectrometry of synthetic polymers and advanced materials. Angew. Chem. Int. Ed. 56, 1452–1464 (2017)CrossRefGoogle Scholar
  23. 23.
    Ferrer, M., Gutiérrez, A., Mounir, M., Rossell, O., Ruiz, E., Rang, A., Engeser, M.: Self-assembly reactions between the cis-protected metal corners (N−N)MII (N−N = ethylenediamine, 4,4′-substituted 2,2′-bipyridine; M = Pd, Pt) and the fluorinated edge 1,4-bis(4-pyridyl)tetrafluorobenzene. Inorg. Chem. 46, 3395–3406 (2007)CrossRefPubMedGoogle Scholar
  24. 24.
    Schmittel, M., He, B., Fan, J., Bats, J.W., Engeser, M., Schlosser, M., Deiseroth, H.: Cap for copper(I) ions! Metallosupramolecular solid and solution state structures on the basis of the dynamic tetrahedral [Cu(phenAr2)(py)2]+ motif. Inorg. Chem. 48, 8192–8200 (2009)CrossRefPubMedGoogle Scholar
  25. 25.
    Albrecht, M., Fiege, M., Kögerler, P., Speldrich, M., Fröhlich, R., Engeser, M.: Magnetic coupling in enantiomerically pure trinuclear helicate-type complexes formed by hierarchical self-assembly. Chem. Eur. J. 16, 8797–8804 (2010)CrossRefPubMedGoogle Scholar
  26. 26.
    Neogi, S., Schnakenburg, G., Lorenz, Y., Engeser, M., Schmittel, M.: Implications of stoichiometry-controlled structural changeover between heteroleptic trigonal [Cu(phenAr2)(py)]+ and tetragonal [Cu(phenAr2)(py)2]+ motifs for solution and solid-state supramolecular self-assembly. Inorg. Chem. 51, 10832–10841 (2012)CrossRefPubMedGoogle Scholar
  27. 27.
    Neogi, S., Lorenz, Y., Engeser, M., Samanta, D., Schmittel, M.: Heteroleptic metallosupramolecular racks, rectangles, and trigonal prisms: stoichiometry-controlled reversible interconversion. Inorg. Chem. 52, 6975–6984 (2013)CrossRefPubMedGoogle Scholar
  28. 28.
    Hovorka, R., Hytteballe, S., Piehler, T., Meyer-Eppler, G., Topić, F., Rissanen, K., Engeser, M., Lützen, A.: Self-assembly of metallosupramolecular rhombi from chiral concave 9,9′-spirobifluorene-derived bis(pyridine) ligands. Beilstein J. Org. Chem. 10, 432–441 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gütz, C., Hovorka, R., Struch, N., Bunzen, J., Meyer-Eppler, G., Qu, Z.-W., Grimme, S., Cetina, M., Topić, F., Rissanen, K., Engeser, M., Lützen, A.: Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry. J. Am. Chem. Soc. 136, 11830–11838 (2014)CrossRefPubMedGoogle Scholar
  30. 30.
    Hovorka, R., Meyer-Eppler, G., Piehler, T., Hytteballe, S., Engeser, M., Topić, F., Rissanen, K., Lützen, A.: Unexpected self-assembly of a homochiral metallosupramolecular M4L4 catenane. Chem. Eur. J. 20, 13253–13258 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    Struch, N., Bannwarth, C., Ronson, T.K., Lorenz, Y., Mienert, B., Wagner, N., Engeser, M., Bill, E., Puttreddy, R., Rissanen, K., Beck, J., Grimme, S., Nitschke, J.R., Lützen, A.: An octanuclear metallosupramolecular cage designed to exhibit spin-crossover behavior. Angew. Chem. Int. Ed. 56, 4930–4935 (2017)CrossRefGoogle Scholar
  32. 32.
    Chan, Y.-T., Li, X., Yu, J., Carri, G.A., Moorefield, C.N., Newkome, G.R., Wesdemiotis, C.: Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)– and ruthenium(II)–terpyridine metallomacrocycles. J. Am. Chem. Soc. 133, 11967–11976 (2011)CrossRefPubMedGoogle Scholar
  33. 33.
    Li, X., Chan, Y., Newkome, G.R., Wesdemiotis, C.R.: Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Anal. Chem. 83, 1284–1290 (2011)CrossRefPubMedGoogle Scholar
  34. 34.
    Guo, K., Guo, Z., Ludlow, J.M., Xie, T., Liao, S., Newkome, G.R., Wesdemiotis, C.: Characterization of metallosupramolecular polymers by top-down multidimensional mass spectrometry methods. Macromol. Rap. Commun. 36, 1539–1552 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhang, Z., Wang, H., Wang, X., Li, Y., Song, B., Bolarinwa, O., Reese, R.A., Zhang, T., Wang, X.-Q., Cai, J., Xu, B., Wang, M., Liu, C., Yang, H.-B., Li, X.: Supersnowflakes: stepwise self-assembly and dynamic exchange of rhombus star-shaped supramolecules. J. Am. Chem. Soc. 139, 8174–8185 (2017)CrossRefPubMedGoogle Scholar
  36. 36.
    Brusilowskij, B., Neubacher, S., Schalley, C.A.: A double intramolecular cage contraction within a self-assembled metallo-supramolecular bowl. Chem. Commun. 785–787 (2009).  https://doi.org/10.1039/B819412B
  37. 37.
    Brusilowskij, B., Dzyuba, E.V., Troff, R.W., Schalley, C.A.: Effects of subtle differences in ligand constitution and conformation in metallo-supramolecular self-assembled polygons. Dalton Trans. 40, 12089–12096 (2011)CrossRefPubMedGoogle Scholar
  38. 38.
    Brusilowskij, B., Dzyuba, E.V., Troff, R.W., Schalley, C.A.: Thermodynamically controlled self-sorting of hetero-bimetallic metallo-supramolecular macrocycles: what a difference a methylene group makes! Chem. Commun. 47, 1830–1832 (2011)CrossRefGoogle Scholar
  39. 39.
    Rodríguez, L., Lima, J.C., Ferrer, M., Rossell, O., Engeser, M.: 3D au–ag heterometallic supramolecular cage: triplet capture by heavy atom effect. Inorg. Chim. Acta. 381, 195–202 (2012)CrossRefGoogle Scholar
  40. 40.
    Gütz, C., Hovorka, R., Klein, C., Jiang, Q.-Q., Bannwarth, C., Engeser, M., Schmuck, C., Assenmacher, W., Mader, W., Topić, F., Rissanen, F., Grimme, S., Lützen, A.: Enantiomerically pure [M6L12] or [M12L24] polyhedra from flexible bis(pyridine) ligands. Angew. Chem. Int. Ed. 53, 1693–1698 (2014)CrossRefGoogle Scholar
  41. 41.
    Sleno, L., Volmer, D.A.: Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004)CrossRefPubMedGoogle Scholar
  42. 42.
    Gross, J.H.: Mass spectrometry. A textbook. Springer, Berlin (2004)CrossRefGoogle Scholar
  43. 43.
    F. W. McLafferty, F. Turecek, Interpretation of mass spectra, 4th edn. University Science Books (1993). Google Scholar
  44. 44.
    Ferrer, M., Gutiérrez, A., Rodríguez, L., Rossell, O., Ruiz, E., Engeser, M., Lorenz, Y., Schilling, R., Gómez-Sahl, P., Martín, A.: Self-assembly of heterometallic metallomacrocycles via Ditopic fluoroaryl gold(I) organometallic metalloligands. Organometallics. 31, 1533–1545 (2012)CrossRefGoogle Scholar
  45. 45.
    Cooks, R.G., Patrick, J.S., Kotiaho, T., McLuckey, S.A.: Thermochemical determinations by the kinetic method. Mass Spec. Rev. 13, 287–339 (1994)CrossRefGoogle Scholar
  46. 46.
    Cooks, R.G., Wong, P.S.H.: Kinetic method of making thermochemical determinations: advances and applications. Acc. Chem. Res. 31, 379–386 (1998)CrossRefGoogle Scholar
  47. 47.
    Wu, H.F., Brodbelt, J.S.: Comparison of the orders of gas-phase basicities and ammonium ion affinities of polyethers by the kinetic method and ligand exchange technique. J. Am. Soc. Mass Spectrom. 4, 718–722 (1993)CrossRefPubMedGoogle Scholar
  48. 48.
    Schröder, D., Schwarz, H.: Ligand effects as probes for mechanistic aspects of remote C-H bond activation by iron(I) cations in the gas phase. J. Organomet. Chem. 504, 123–135 (1995)CrossRefGoogle Scholar
  49. 49.
    Rodgers, M.T., Armentrout, P.B.: Cationic noncovalent interactions: energetics and periodic trends. Chem. Rev. 116, 5642–5687 (2016)CrossRefPubMedGoogle Scholar
  50. 50.
    Lorenz, Y., Gutiérrez, A., Ferrer, M., Engeser, M.: Bond dissociation energies of metallosupramolecular building blocks: insight from fragmentation of selectively self-assembled heterometallic metallo-supramolecular aggregates. Inorg. Chem. 57, 7346–7354 (2018)CrossRefPubMedGoogle Scholar
  51. 51.
    Stang, P.J., Cao, D.H.: Transition metal based cationic molecular boxes. Self-assembly of macrocyclic platinum(II) and palladium(II) tetranuclear complexes. J. Am. Chem. Soc. 116, 4981–4982 (1994)CrossRefGoogle Scholar
  52. 52.
    Schalley, C.A., Müller, T., Linnartz, P., Witt, M., Schäfer, M., Lützen, A.: Mass spectrometric characterization and gas-phase chemistry of self-assembling supramolecular squares and triangles. Chem. Eur. J. 8, 3538–3551 (2002)CrossRefPubMedGoogle Scholar
  53. 53.
    Engeser, M., Rang, A., Ferrer, M., Gutierrez, A., Baytekin, H.T., Schalley, C.A.: Reactivity of self-assembled supramolecular complexes in the gas phase: a supramolecular neighbor group effect. Int. J. Mass Spectrom. 255/256, 185–194 (2006)CrossRefGoogle Scholar
  54. 54.
    Anhäuser, J., Puttreddy, R., Lorenz, Y., Schneider, A., Engeser, M., Rissanen, K., Lützen, A.: Chiral self-sorting behaviour of [2.2]paracyclophane-based bis(pyridine) ligands. Org. Chem. Front. 6, 1226–1235 (2019).  https://doi.org/10.1039/C9QO00155G
  55. 55.
    Additional new signals in the range m/z 500-660 can be assigned to mononuclear Pd-complexes with some other anions which stem from previous LC-MS runs performed on the same instrument.Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnBonnGermany

Personalised recommendations