Structure Elucidation of Macrolide Antibiotics Using MSn Analysis and Deuterium Labelling

  • Andrew R. Johnson
  • Erin E. CarlsonEmail author
Research Article


The 14- and 16-membered macrolide antibiotics are an important structural class. Ubiquitously produced by a number of bacterial strains, namely actinomycetes, purification and structure elucidation of the wide array of analogs is challenging, both for discovery efforts and methodologies to monitor for byproducts, metabolites, and contaminants. Collision-induced dissociation mass spectrometry offers an attractive solution, enabling characterization of mixtures, and providing a wealth of structural information. However, interpretation of these spectra can be difficult. We present a study of 14- and 16-membered macrolide antibiotics, including MSn analysis for unprecedented depth of coverage, and complimentary analysis with D2O and H218O labeling to elucidate fragmentation mechanisms. These analyses contrast the behaviors of varying classes of macrolides and highlight how analogues can be identified in relation to similar structures, which will provide utility for future studies of novel macrolides, as well as impurities, metabolites, and degradation products of pharmaceuticals.

Graphical Abstract


Macrolide antibiotics, Multilevel fragmentation, Structure elucidation 



This work was supported by a NSF Career Award, CHE-1518379, a Sloan Research Fellow Award (E.E.C.), an Indiana University Quantitative and Chemical Biology training fellowship (A.R.J.), and the University of Minnesota.

Supplementary material

13361_2019_2210_MOESM1_ESM.pdf (5.8 mb)
ESM 1 (PDF 5922 kb)


  1. 1.
    World Health Organization (WHO). WHO model list of essential medicines—20th List. Geneva, Switzerland. (2018)
  2. 2.
    Kannan, K., Kanabar, P., Schryer, D., Florin, T., Oh, E., Bahroos, N., Tenson, T., Weissman, J.S., Mankin, A.S.: The general mode of translation inhibition by macrolide antibiotics. Proc. Natl. Acad. Sci. 111, 15958–15963 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhu, Z.J., Krasnykh, O., Pan, D., Petukhova, V., Yu, G., Liu, Y., Liu, H., Hong, S., Wang, Y., Wan, B., Liang, W., Franzblau, S.G.: Structure-activity relationships of macrolides against Mycobacterium tuberculosis. Tuberculosis. 88, S49–S63 (2008)CrossRefGoogle Scholar
  4. 4.
    Ma, C., Ma, S.: Various novel erythromycin deritivates obtained by different modifications: recent advance in macrolide antibiotics. Mini-Rev. Med. Chem. 10, 272–286 (2010)CrossRefGoogle Scholar
  5. 5.
    Cui, W., Ma, S.: Recent advances in the field of 16-membered macrolide antibiotics. Mini-Rev. Med. Chem. 11, 1009–1018 (2011)CrossRefGoogle Scholar
  6. 6.
    Clark, R.F., Ma, Z., Wang, S., Griesgraber, G., Tufano, M., Yong, H., Li, L., Zhang, X., Nilius, A.M., Chu, D.T.W., Or, Y.S.: Synthesis and antibacterial activity of novel 6-O-substituted erythromycin a derivatives. Bioorg. Med. Chem. Lett. 10, 815–819 (2000)CrossRefGoogle Scholar
  7. 7.
    Ayuso-Sacido, A., Genilloud, O.: New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microb. Ecol. 49, 10–24 (2005)CrossRefGoogle Scholar
  8. 8.
    Cimermancic, P., Medema, M.H., Claesen, J., Kurita, K., Wieland Brown, L.C., Mavrommatis, K., Pati, A., Godfrey, P.A., Koehrsen, M., Clardy, J., Birren, B.W., Takano, E., Sali, A., Linington, R.G., Fischbach, M.A.: Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell. 158, 412–421 (2014)CrossRefGoogle Scholar
  9. 9.
    Krug, D., Muller, R.: Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat. Prod. Rep. 31, 768–783 (2014)CrossRefGoogle Scholar
  10. 10.
    Johnson, A.R., Carlson, E.E.: Collision-induced dissociation mass spectrometry: a powerful tool for natural product structure elucidation. Anal. Chem. 87, 10668–10678 (2015)CrossRefGoogle Scholar
  11. 11.
    Kersten, R.D., Ziemert, N., Gonzalez, D.J., Duggan, B.M., Nizet, V., Dorrestein, P.C., Moore, B.S.: Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl. Acad. Sci. U. S. A. 110, E4407–E4416 (2013)CrossRefGoogle Scholar
  12. 12.
    Crowe, M.C., Brodbelt, J.S., Goolsby, B.J., Hergenrother, P.: Characterization of erythromycin analogs by collisional activated dissociation and infrared multiphoton dissociation in a quadrupole ion trap. J. Am. Soc. Mass Spectrom. 13, 630–649 (2002)CrossRefGoogle Scholar
  13. 13.
    Gates, P., Kearney, G.C., Jones, R., Leadlay, P.F., Staunton, J.: Structural elucidation studies of erythromycins by electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 13, 242–246 (1999)CrossRefGoogle Scholar
  14. 14.
    Kumar Chitneni, S., Govaerts, C., Adams, E., Van Schepdael, A., Hoogmartens, J.: Identification of impurities in erythromycin by liquid chromatography–mass spectrometric detection. J. Chromatogr. A. 1056, 111–120 (2004)CrossRefGoogle Scholar
  15. 15.
    Leonard, S., Ferraro, M., Adams, E., Hoogmartens, J., Van Schepdael, A.: Application of liquid chromatography/ion trap mass spectrometry to the characterization of the related substances of clarithromycin. Rapid Commun. Mass Spectrom. 20, 3101–3110 (2006)CrossRefGoogle Scholar
  16. 16.
    Kwiecień, A., Krzek, J., Żmudzki, P., Matoga, U., Długosz, M., Szczubiałka, K., Nowakowska, M.: Roxithromycin degradation by acidic hydrolysis and photocatalysis. Anal. Methods. 6, 6414 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, F., Zeng, H., Wang, J.: Characterization of nineteen impurities in Roxithromycin by HPLC/TOF and ion trap mass spectrometry. Chromatographia. 76, 1683–1695 (2013)CrossRefGoogle Scholar
  18. 18.
    Pendela, M., Govaerts, C., Diana, J., Hoogmartens, J., Van Schepdael, A., Adams, E.: Characterization of impurities in spiramycin by liquid chromatography/ion trap mass spectrometry. Rapid Commun. Mass Spectrom. 21, 599–613 (2007)CrossRefGoogle Scholar
  19. 19.
    Govaerts, C., Chepkwony, H.K., Van Schepdael, A., Adams, E., Roets, E., Hoogmartens, J.: Application of liquid chromatography-ion trap mass spectrometry to the characterization of the 16-membered ring macrolide josamycin propionate. J. Mass Spectrom. 39, 437–446 (2004)CrossRefGoogle Scholar
  20. 20.
    Gebhardt, P., Perner, A., Grafe, U.: Preparative separation and analysis of complex mixtures of leucomycins and Desmycarosyl leucomycins using HPLC and mass spectrometry. Chromatographia. 60, 229–234 (2004)Google Scholar
  21. 21.
    Chopra, S., Van Schepdael, A., Hoogmartens, J., Adams, E.: Characterization of impurities in tylosin using dual liquid chromatography combined with ion trap mass spectrometry. Talanta. 106, 29–38 (2013)CrossRefGoogle Scholar
  22. 22.
    LeRiche, T., Osterodt, J., Volmer, D.A.: An experimental comparison of electrospray ion-trap and matrix-assisted laser desorption/ionization post-source decay mass spectra for the characterization of small drug molecules. Rapid Commun. Mass Spectrom. 15, 608–614 (2001)CrossRefGoogle Scholar
  23. 23.
    Van den Bossche, L., Daidone, F., Van Schepdael, A., Hoogmartens, J., Adams, E.: Characterization of impurities in josamycin using dual liquid chromatography combined with mass spectrometry. J. Pharm. Biomed. Anal. 73, 66–76 (2013)CrossRefGoogle Scholar
  24. 24.
    Yang, S., Carlson, K.H.: Solid-phase extraction-high-performance liquid chromatography-ion trap mass spectrometry for analysis of trace concentrations of macrolide antibiotics in natural and waste water matrices. J. Chrom. A. 1038, 141–155 (2004)CrossRefGoogle Scholar
  25. 25.
    Dubois, M., Sior, F.E., Delahaut, P.: Identification and quantification of five macrolide antibiotics in several tissues, eggs and Milk by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B. 753, 189–202 (2001)CrossRefGoogle Scholar
  26. 26.
    Cerny, R.L., MacMillan, D.K., Gross, M.L., Mallams, A.K., Pramanik, B.N.: Fast-atom bombardment and tandem mass spectrometry of macrolide antibiotics. J. Am. Soc. Mass Specrom. 5, 151–158 (1994)CrossRefGoogle Scholar
  27. 27.
    Kearney, G.C., Gates, P., Leadlay, P.F., Staunton, J., Jones, R.: Structural elucidation studies of erythromycins by electrospray tandem mass spectrometry II. Rapid Commun. Mass Spectrom. 13, 1650–1656 (1999)CrossRefGoogle Scholar
  28. 28.
    Demarque, D.P., Crotti, A.E., Vessecchi, R., Lopes, J.L., Lopes, N.P.: Fragmentation reactions using electrospray ionization mass spectrometry: an important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 33, 432–455 (2016)CrossRefGoogle Scholar
  29. 29.
    Bythell, B.J., Abutokaikah, M.T., Wagoner, A.R., Guan, S., Rabus, J.M.: Cationized carbohydrate gas-phase fragmentation chemistry. J. Am. Soc. Mass Spectrom. 28, 688–703 (2017)CrossRefGoogle Scholar
  30. 30.
    Gembarovski, D., Markovic, V.G., Galic, N.: Structural elucidation studies of 15-membered azalide macrocycles using H/D exchange and ESI-MS(n.). J. Pharm. Biomed. Anal. 86, 1–10 (2013)CrossRefGoogle Scholar
  31. 31.
    Weis, D.D.: Hydrogen exchange mass spectrometry of proteins: fundamentals, methods, and applications. John Wiley and Sons. (2016)
  32. 32.
    Roddis, M., Gates, P., Roddis, Y., Staunton, J.: Structure elucidation studies on 14- and 16-membered macrolide aglycones by accurate-mass electrospray sequential mass spectrometry. J. Am. Soc. Mass Spectrom. 13, 862–874 (2002)CrossRefGoogle Scholar
  33. 33.
    Cachet, T., Van den Mooter, G., Hauchecorne, R., Vinckier, C., Hoogmartens, J.: Decomposition kinetics of erythromycin a in acidic aqueous solutions. Int. J. Pharm. 55, 59–65 (1989)CrossRefGoogle Scholar
  34. 34.
    Gates, P.J., Kearney, G.C., Jones, R., Leadlay, P.F., Staunton, J.: Structure elucidation studies of erythromycins by electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom. 13, 242–246 (1999)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Medicinal ChemistryUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations