Soft Matrix–Assisted Laser Desorption/Ionization for Labile Glycoconjugates

  • Chuping Lee
  • Chi-Kung NiEmail author
Research Article


Since its introduction, matrix-assisted laser desorption/ionization (MALDI) has been widely used for the mass analysis of biomolecules. The “soft ionization” of MALDI enables accurate mass determination of intact biomolecules. However, the ionization and desorption processes of MALDI are not adequately soft as many labile biomolecules, such as glycoconjugates containing sialic acid or the sulfate functional group, easily dissociate into fragments and sometimes, no intact molecules are observed. In this study, we compared the conventional matrix of MALDI, namely 2,5-dihydroxybenzoic acid, to various soft matrices of MALDI—specifically, 5-methoxysalicylic acid, diamond nanoparticle trilayers, HgTe nanostructures, ionic liquid, and droplets of frozen solutions—by using three labile glycoconjugates as analytes: gangliosides, heparin, and pullulan. We demonstrated that droplets of frozen solution are the softest matrices for gangliosides and heparin. In particular, droplets of frozen solution do not generate fragments for gangliosides and can be used to determine the relative abundance of various gangliosides, whereas ionic liquid 2,5-dihydroxybenzoic acid butylamine is the most suitable matrix for pullulan mass analysis.

Graphical Abstract


MALDI Glycoconjugates Glycans Frozen solution Diamond nanoparticle trilayers Ionic liquid Gangliosides Heparin Pullulan 



We thank Dr. Chang, Huan-Tsung, and Dr. Chang, Hsiang-Yu for providing HgTe nanostructures. We also thank Dr. Wang, Yi Sheng, and Dr. Wang, Chia-Chen, for their help in preparing the trilayer samples. We acknowledge the support of the Ministry of Science and Technology, Taiwan (NSC 106-2113-M-001-023-MY3).

Supplementary material

13361_2019_2208_MOESM1_ESM.docx (220 kb)
ESM 1 (DOCX 220 kb)


  1. 1.
    Wiederschain, G.Y.: Essentials of glycobiology. Biochem. Mosc. 74, 1056–1056 (2009)CrossRefGoogle Scholar
  2. 2.
    Taylor, M.E., Drickamer, K. Oxford university press, UK. (2011)Google Scholar
  3. 3.
    Zaia, J.: Mass spectrometry and glycomics. OMICS: J. Integr. Biol. 14, 401–418 (2010)CrossRefGoogle Scholar
  4. 4.
    Karas, M., Bachmann, D., Bahr, U.e., Hillenkamp, F.: Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78, 53–68 (1987)Google Scholar
  5. 5.
    Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988)CrossRefGoogle Scholar
  6. 6.
    Whitehouse, C.M., Dreyer, R.N., Yamashita, M., Fenn, J.B.: Electrospray interface for liquid chromatographs and mass spectrometers. Anal. Chem. 57, 675–679 (1985)CrossRefGoogle Scholar
  7. 7.
    Meng, C.K., Mann, M., Fenn, J.: Of protons or proteins. Z. Phys. D-Atoms, Molecules and Clusters. 10, 361–368 (1988)Google Scholar
  8. 8.
    Dell, A., Morris, H.R.: Glycoprotein structure determination by mass spectrometry. Science. 291, 2351–2356 (2001)CrossRefGoogle Scholar
  9. 9.
    Naven, T.J., Harvey, D.: Effect of structure on the signal strength of oligosaccharides in matrix-assisted laser desorption/ionization mass spectrometry on time-of-flight and magnetic sector instruments. Rapid Commun. Mass Spectrom. 10, 1361–1366 (1996)CrossRefGoogle Scholar
  10. 10.
    Kailemia, M.J., Ruhaak, L.R., Lebrilla, C.B., Amster, I.J.: Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86, 196–212 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, J.L., Lee, C., Lu, I.C., Chien, C.L., Lee, Y.T., Hu, W.P., Ni, C.K.: Theoretical investigation of low detection sensitivity for underivatized carbohydrates in ESI and MALDI. J. Mass Spectrom. 51, 1180–1186 (2016)CrossRefGoogle Scholar
  12. 12.
    Luo, G., Marginean, I., Vertes, A.: Internal energy of ions generated by matrix-assisted laser desorption/ionization. Anal. Chem. 74, 6185–6190 (2002)CrossRefGoogle Scholar
  13. 13.
    Luo, G., Marginean, I., Ye, L., Vertes, A.: Competing ion decomposition channels in matrix-assisted laser desorption ionization. J. Phys. Chem. B. 112, 6952–6956 (2008)CrossRefGoogle Scholar
  14. 14.
    Gabelica, V., Schulz, E., Karas, M.: Internal energy build-up in matrix-assisted laser desorption/ionization. J. Mass Spectrom. 39, 579–593 (2004)CrossRefGoogle Scholar
  15. 15.
    Zhu, L., Parr, G.R., Fitzgerald, M.C., Nelson, C.M., Smith, L.M.: Oligodeoxynucleotide fragmentation in MALDI/TOF mass spectrometry using 355-nm radiation. J. Am. Soc. Mass Spectrom. 117, 6048–6056 (1995)Google Scholar
  16. 16.
    Schn¨olzer, M., Lehmann, W.D.: Identification of modified peptides by metastable fragmentation in MALDI mass spectrometry. Int. J. Mass Spectrom. Ion Process. 169(170), 263–271 (1997)CrossRefGoogle Scholar
  17. 17.
    Karas, M., Bahr, U., Strupat, K., Hillenkamp, F., Tsarbopopoulos, A., Paamanik, B.N.: Matrix dependance of metastable fragmentation of glycoproteins in MALDI TOF mass spectrometry. Anal. Chem. 67, 675–679 (1995)CrossRefGoogle Scholar
  18. 18.
    Spengler, B., Kirsch, D., Kaufmann, R.: Fundamental aspects of postsource decay in MALDI mass spectrometry. J. Phys. Chem. 96, 6978–9684 (1992)CrossRefGoogle Scholar
  19. 19.
    Brown, R.S., Feng, J., Reiber, D.C.: Further studies of in-source fragmentation of peptides in MALDI. Int. J. Mass Spectrom. Ion Process. 169(170), 1–18 (1997)CrossRefGoogle Scholar
  20. 20.
    Huang, M.-F., Chang, H.-T.: Detection of carbohydrates using surface-assisted laser desorption/ionization mass spectrometry with HgTe nanostructures. Chem. Sci. 3, 2147–2152 (2012)CrossRefGoogle Scholar
  21. 21.
    Wu, C.-L., Wang, C.-C., Lai, Y.-H., Lee, H., Lin, J.-D., Lee, Y.T., Wang, Y.-S.: Selective enhancement of carbohydrate ion abundances by diamond nanoparticles for mass spectrometric analysis. Anal. Chem. 85, 3836–3841 (2013)CrossRefGoogle Scholar
  22. 22.
    Hunter, J.M., Hua Lin, H., Becker, C.H.: Cryogenic frozen solution matrixes for analysis of DNA by time-of-flight mass spectrometry. Anal. Chem. 69, 3608–3612 (1997)CrossRefGoogle Scholar
  23. 23.
    Kraft, P., Alimpiev, S., Dratz, E., Sunner, J.: Infrared, surface-assisted laser desorption ionization mass spectrometry on frozen aqueous solutions of proteins and peptides using suspensions of organic solids. J. Am. Soc. Mass Spectrom. 9, 912–924 (1998)CrossRefGoogle Scholar
  24. 24.
    Caldwell, K.L., Murray, K.K.: Mid-infrared matrix assisted laser desorption ionization with a water/glycerol matrix. Appl. Surf. Sci. 127–129, 242–247 (1998)CrossRefGoogle Scholar
  25. 25.
    Liang, C.-W., Chang, P.-J., Lin, Y.-J., Lee, Y.-T., Ni, C.-K.: High ion yields of carbohydrates from frozen solution by UV-MALDI. Anal. Chem. 84, 3493–3499 (2012)CrossRefGoogle Scholar
  26. 26.
    R. K. Yu, M.Y., T. Ariga: Glycosphingolipid structures. Elsevier. (2007)Google Scholar
  27. 27.
    Vukelić, Ž., Kalanj-Bognar, S., Froesch, M., Bîndilă, L., Radić, B., Allen, M., Peter-Katalinić, J., Zamfir, A.D.: Human gliosarcoma-associated ganglioside composition is complex and distinctive as evidenced by high-performance mass spectrometric determination and structural characterization. Glycobiology. 17, 504–515 (2007)CrossRefGoogle Scholar
  28. 28.
    Ariga, T., McDonald, M.P., Robert, K.Y.: Thematic review series: sphingolipids. Role of ganglioside metabolism in the pathogenesis of Alzheimer’s disease—a review. J. Lipid Res. 49, 1157–1175 (2008)Google Scholar
  29. 29.
    Nussbaum, R.L., Ellis, C.E.: Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med. 348, 1356–1364 (2003)CrossRefGoogle Scholar
  30. 30.
    Colsch, B., Woods, A.S.: Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology. 20, 661–667 (2010)CrossRefGoogle Scholar
  31. 31.
    Colsch, B., Jackson, S.N., Dutta, S., Woods, A.S.: Molecular microscopy of brain gangliosides: illustrating their distribution in hippocampal cell layers. ACS Chem. Neurosci. 2, 213–222 (2011)CrossRefGoogle Scholar
  32. 32.
    Zhang, Y., Wang, J., Liu, J.a., Han, J., Xiong, S., Yong, W., Zhao, Z.: Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain. Sci. Rep. 6, (2016)Google Scholar
  33. 33.
    Juhasz, P., Costello, C.E.: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry of underivatized and permethylated gangliosides. J. Am. Soc. Mass Spectrom. 3, 785–796 (1992)CrossRefGoogle Scholar
  34. 34.
    Sekiya, S., Wada, Y., Tanaka, K.: Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77, 4962–4968 (2005)CrossRefGoogle Scholar
  35. 35.
    Mank, M., Stahl, B., Boehm, G.: 2, 5-Dihydroxybenzoic acid butylamine and other ionic liquid matrixes for enhanced MALDI-MS analysis of biomolecules. Anal. Chem. 76, 2938–2950 (2004)CrossRefGoogle Scholar
  36. 36.
    Chan, K., Lanthier, P., Liu, X., Sandhu, J.K., Stanimirovic, D., Li, J.: MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal. Chim. Acta. 639, 57–61 (2009)CrossRefGoogle Scholar
  37. 37.
    Lee, D., Cha, S.: 5-Methoxysalicylic acid matrix for ganglioside analysis with matrix-assisted laser desorption/ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 522–525 (2015)CrossRefGoogle Scholar
  38. 38.
    Ivleva, V.B., Elkin, Y.N., Budnik, B.A., Moyer, S.C., O'Connor, P.B., Costello, C.E.: Coupling thin-layer chromatography with vibrational cooling matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for the analysis of ganglioside mixtures. Anal. Chem. 76, 6484–6491 (2004)CrossRefGoogle Scholar
  39. 39.
    Richards, A.L., Lietz, C.B., Wager-Miller, J., Mackie, K., Trimpin, S.: Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet. J. Lipid Res. 53, 1390–1398 (2012)CrossRefGoogle Scholar
  40. 40.
    Laremore, T.N., Murugesan, S., Park, T.-J., Avci, F.Y., Zagorevski, D.V., Linhardt, R.J.: Matrix-assisted laser desorption/ionization mass spectrometric analysis of uncomplexed highly sulfated oligosaccharides using ionic liquid matrices. Anal. Chem. 78, 1774–1779 (2006)CrossRefGoogle Scholar
  41. 41.
    Witt, L., Pirkl, A., Draude, F., Peter-Katalinić, J., Dreisewerd, K., Mormann, M.: Water ice is a soft matrix for the structural characterization of glycosaminoglycans by infrared matrix-assisted laser desorption/ionization. Anal. Chem. 86, 6439–6446 (2014)CrossRefGoogle Scholar
  42. 42.
    Zaia, J.: Glycosaminoglycan glycomics using mass spectrometry. Mol. Cell. Proteomics. 12, 885–892 (2013)CrossRefGoogle Scholar
  43. 43.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Robin, D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002)CrossRefGoogle Scholar
  44. 44.
    Walther, P., Ota, A., Müller, A., Hermanutz, F., Gähr, F., Buchmeiser, M.R.: Chitin foils and coatings prepared from ionic liquids. Macromol. Mater. Eng. 301, 1337–1344 (2016)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Institute of Atomic and Molecular Sciences, Academia SinicaTaipeiTaiwan
  2. 2.Department of ChemistryWayne State UniversityDetroitUSA
  3. 3.Department of ChemistryNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations