Advertisement

Mass Spectrometry-Based Integration and Expansion of the Chemical Diversity Harbored Within a Marine Sponge

  • Thomas P. Cantrell
  • Christopher J. Freeman
  • Valerie J. Paul
  • Vinayak AgarwalEmail author
  • Neha GargEmail author
Focus: Emerging Investigators: Research Article

Abstract

Marine sponges and their associated symbionts produce a structurally diverse and complex set of natural products including alkaloids, terpenoids, peptides, lipids, and steroids. A single sponge with its symbionts can produce all of the above-mentioned classes of molecules and their analogs. Most approaches to evaluating sponge chemical diversity have focused on major metabolites that can be isolated and characterized; therefore, a comprehensive evaluation of intra- (within a molecular family; analogs) and inter-chemical diversity within a single sponge remains incomplete. We use a combination of metabolomics tools, including a supervised approach via manual library search and literature search, and an unsupervised approach via molecular networking and MS2LDA analysis to describe the intra and inter-chemical diversity present in Smenospongia aurea. Furthermore, we use imaging mass spectrometry to link this chemical diversity to either the sponge or the associated cyanobacteria. Using these approaches, we identify seven more molecular features that represent analogs of four previously known peptide/polyketide smenamides and assign the biosynthesis of these molecules to the symbiotic cyanobacteria by imaging mass spectrometry. We extend this analysis to a wide diversity of molecular classes including indole alkaloids and meroterpenes.

Keywords

Imaging mass spectrometry Marine sponge Molecular networking MS2LDA Untargeted metabolomics Chemical diversity 

Notes

Acknowledgements

This work was supported by US National Institutes of Health (R00-ES026620 to V.A.) and Alfred P. Sloan Foundation research fellowship (FG-2018-10920 to V.A.). The authors thank Ipsita Mohanty for sponge DNA barcoding and Andrew C. Mcavoy for collecting data for standards. We thank Erich Bartels (Mote Marine Laboratory) for field assistance. We wish to acknowledge the core facilities at the Parker H. Petit Institute for Bioengineering and Bioscience at the Georgia Institute of Technology for the use of their shared equipment, services and expertise: Andrew Shaw and Aaron Lifland for help with fluorescence microscopy and Aqua T. Asberry for help with cryosectioning of sponge samples. We would like to thank Prof. Facundo Fernandez (Georgia Institute of Technology) for use of their MALDI matrix sprayer. We would like to thank Ming Wang and Justin J. van der Hooft, University of California San Diego, for use of MS2LDA workflow.

Supplementary material

13361_2019_2207_MOESM1_ESM.pdf (1.5 mb)
ESM 1 (PDF 1531 kb)

References

  1. 1.
    Baker, M.: Metabolomics: from small molecules to big ideas. Nat. Methods. 8, 117 (2011)CrossRefGoogle Scholar
  2. 2.
    Patti, G.J., Yanes, O., Siuzdak, G.: Innovation: metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell. Biol. 13, 263–269 (2012)CrossRefGoogle Scholar
  3. 3.
    Scheubert, K., Hufsky, F., Bocker, S.: Computational mass spectrometry for small molecules. J Cheminform. 5, 12 (2013)CrossRefGoogle Scholar
  4. 4.
    Bouslimani, A., Sanchez, L.M., Garg, N., Dorrestein, P.C.: Mass spectrometry of natural products: current, emerging and future technologies. Nat. Prod. Rep. 31, 718–729 (2014)CrossRefGoogle Scholar
  5. 5.
    Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., Porto, C., Bouslimani, A., Melnik, A.V., Meehan, M.J., Liu, W.T., Crusemann, M., Boudreau, P.D., Esquenazi, E., Sandoval-Calderon, M., Kersten, R.D., Pace, L.A., Quinn, R.A., Duncan, K.R., Hsu, C.C., Floros, D.J., Gavilan, R.G., Kleigrewe, K., Northen, T., Dutton, R.J., Parrot, D., Carlson, E.E., Aigle, B., Michelsen, C.F., Jelsbak, L., Sohlenkamp, C., Pevzner, P., Edlund, A., McLean, J., Piel, J., Murphy, B.T., Gerwick, L., Liaw, C.C., Yang, Y.L., Humpf, H.U., Maansson, M., Keyzers, R.A., Sims, A.C., Johnson, A.R., Sidebottom, A.M., Sedio, B.E., Klitgaard, A., Larson, C.B., Boya, P.C., Torres-Mendoza, D., Gonzalez, D.J., Silva, D.B., Marques, L.M., Demarque, D.P., Pociute, E., O'Neill, E.C., Briand, E., Helfrich, E.J., Granatosky, E.A., Glukhov, E., Ryffel, F., Houson, H., Mohimani, H., Kharbush, J.J., Zeng, Y., Vorholt, J.A., Kurita, K.L., Charusanti, P., McPhail, K.L., Nielsen, K.F., Vuong, L., Elfeki, M., Traxler, M.F., Engene, N., Koyama, N., Vining, O.B., Baric, R., Silva, R.R., Mascuch, S.J., Tomasi, S., Jenkins, S., Macherla, V., Hoffman, T., Agarwal, V., Williams, P.G., Dai, J., Neupane, R., Gurr, J., Rodriguez, A.M., Lamsa, A., Zhang, C., Dorrestein, K., Duggan, B.M., Almaliti, J., Allard, P.M., Phapale, P., Nothias, L.F., Alexandrov, T., Litaudon, M., Wolfender, J.L., Kyle, J.E., Metz, T.O., Peryea, T., Nguyen, D.T., VanLeer, D., Shinn, P., Jadhav, A., Muller, R., Waters, K.M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P.R., Palsson, B.O., Pogliano, K., Linington, R.G., Gutierrez, M., Lopes, N.P., Gerwick, W.H., Moore, B.S., Dorrestein, P.C., Bandeira, N.: Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016)CrossRefGoogle Scholar
  6. 6.
    Kind, T., Tsugawa, H., Cajka, T., Ma, Y., Lai, Z., Mehta, S.S., Wohlgemuth, G., Barupal, D.K., Showalter, M.R., Arita, M., Fiehn, O.: Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 37, 513–532 (2018)CrossRefGoogle Scholar
  7. 7.
    Garg, N., Zeng, Y., Edlund, A., Melnik, A.V., Sanchez, L.M., Mohimani, H., Gurevich, A., Miao, V., Schiffler, S., Lim, Y.W., Luzzatto-Knaan, T., Cai, S., Rohwer, F., Pevzner, P.A., Cichewicz, R.H., Alexandrov, T., Dorrestein, P.C.: Spatial molecular architecture of the microbial community of a Peltigera lichen. mSystems. 1, e00139–e00116 (2016)Google Scholar
  8. 8.
    Buchberger, A.R., DeLaney, K., Johnson, J., Li, L.: Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018)CrossRefGoogle Scholar
  9. 9.
    Gerlich, M., Neumann, S.: MetFusion: integration of compound identification strategies. J. Mass Spectrom. 48, 291–298 (2013)CrossRefGoogle Scholar
  10. 10.
    Haug, K., Salek, R.M., Conesa, P., Hastings, J., de Matos, P., Rijnbeek, M., Mahendraker, T., Williams, M., Neumann, S., Rocca-Serra, P., Maguire, E., Gonzalez-Beltran, A., Sansone, S.A., Griffin, J.L., Steinbeck, C.: MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2013)CrossRefGoogle Scholar
  11. 11.
    Duhrkop, K., Shen, H., Meusel, M., Rousu, J., Bocker, S.: Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. U. S. A. 112, 12580–12585 (2015)CrossRefGoogle Scholar
  12. 12.
    Blunt, J.W., Carroll, A.R., Copp, B.R., Davis, R.A., Keyzers, R.A., Prinsep, M.R.: Marine natural products. Nat. Prod. Rep. 35, 8–53 (2018)CrossRefGoogle Scholar
  13. 13.
    Webster, N.S., Thomas, T.: The sponge hologenome. MBio. 7, e00135–e00116 (2016)CrossRefGoogle Scholar
  14. 14.
    Thomas, T., Moitinho-Silva, L., Lurgi, M., Bjork, J.R., Easson, C., Astudillo-Garcia, C., Olson, J.B., Erwin, P.M., Lopez-Legentil, S., Luter, H., Chaves-Fonnegra, A., Costa, R., Schupp, P.J., Steindler, L., Erpenbeck, D., Gilbert, J., Knight, R., Ackermann, G., Victor Lopez, J., Taylor, M.W., Thacker, R.W., Montoya, J.M., Hentschel, U., Webster, N.S.: Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016)CrossRefGoogle Scholar
  15. 15.
    Pita, L., Rix, L., Slaby, B.M., Franke, A., Hentschel, U.: The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 6, 46 (2018)CrossRefGoogle Scholar
  16. 16.
    Djura, P., Stierle, D.B., Sullivan, B., Faulkner, D.J.: Some metabolites of the marine sponges Smenospongia aurea and Smenospongia (=Polyfibrospongia) echina. J. Org. Chem. 45, 1435–1441 (1980)CrossRefGoogle Scholar
  17. 17.
    Hu, J.F., Schetz, J.A., Kelly, M., Peng, J.N., Ang, K.K.H., Flotow, H., Leong, C.Y., Ng, S.B., Buss, A.D., Wilkins, S.P., Hamann, M.T.: New antiinfective and human 5-HT2 receptor binding natural and semisynthetic compounds from the Jamaican sponge Smenospongia aurea. J. Nat. Prod. 65, 476–480 (2002)CrossRefGoogle Scholar
  18. 18.
    Teta, R., Irollo, E., Della Sala, G., Pirozzi, G., Mangoni, A., Costantino, V.: Smenamides A and B, chlorinated peptide/polyketide hybrids containing a dolapyrrolidinone unit from the Caribbean sponge Smenospongia aurea. Evaluation of their role as leads in antitumor drug research. Mar. Drugs. 11, 4451–4463 (2013)CrossRefGoogle Scholar
  19. 19.
    Esposito, G., Teta, R., Miceli, R., Ceccarelli, L.S., Della Sala, G., Camerlingo, R., Irollo, E., Mangoni, A., Pirozzi, G., Costantino, V.: Isolation and assessment of the in vitro anti-tumor activity of smenothiazole A and B, chlorinated thiazole-containing peptide/polyketides from the Caribbean sponge, Smenospongia aurea. Mar. Drugs. 13, 444 (2015)CrossRefGoogle Scholar
  20. 20.
    Esposito, G., Teta, R., Della Sala, G., Pawlik, J.R., Mangoni, A., Costantino, V.: Isolation of smenopyrone, a Bis-γ-pyrone polypropionate from the Caribbean sponge Smenospongia aurea. Mar. Drugs. 16, 285 (2018)CrossRefGoogle Scholar
  21. 21.
    Members, M.S.I.B., Sansone, S.-A., Fan, T., Goodacre, R., Griffin, J.L., Hardy, N.W., Kaddurah-Daouk, R., Kristal, B.S., Lindon, J., Mendes, P., Morrison, N., Nikolau, B., Robertson, D., Sumner, L.W., Taylor, C., van der Werf, M., van Ommen, B., Fiehn, O.: The metabolomics standards initiative. Nat. Biotechnol. 25, 846 (2007)CrossRefGoogle Scholar
  22. 22.
    Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W.-M., Fiehn, O., Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, J.C., Marriott, P., Nicholls, A.W., Reily, M.D., Thaden, J.J., Viant, M.R.: Proposed minimum reporting standards for chemical analysis. Metabolomics. 3, 211–221 (2007)CrossRefGoogle Scholar
  23. 23.
    Agarwal, V., Blanton, J.M., Podell, S., Taton, A., Schorn, M.A., Busch, J., Lin, Z., Schmidt, E.W., Jensen, P.R., Paul, V.J., Biggs, J.S., Golden, J.W., Allen, E.E., Moore, B.S.: Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol. 13, 537–543 (2017)CrossRefGoogle Scholar
  24. 24.
    Edwards, D.J., Marquez, B.L., Nogle, L.M., McPhail, K., Goeger, D.E., Roberts, M.A., Gerwick, W.H.: Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 11, 817–833 (2004)CrossRefGoogle Scholar
  25. 25.
    Simmons, T.L., Coates, R.C., Clark, B.R., Engene, N., Gonzalez, D., Esquenazi, E., Dorrestein, P.C., Gerwick, W.H.: Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. U. S. A. 105, 4587–4594 (2008)CrossRefGoogle Scholar
  26. 26.
    Unson, M.D., Holland, N.D., Faulkner, D.J.: A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119, 1–11 (1994)CrossRefGoogle Scholar
  27. 27.
    Flowers, A.E., Garson, M.J., Webb, R.I., Dumdei, E.J., Charan, R.D.: Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res. 292, 597–607 (1998)CrossRefGoogle Scholar
  28. 28.
    Schmidt, E.W., Nelson, J.T., Rasko, D.A., Sudek, S., Eisen, J.A., Haygood, M.G., Ravel, J.: Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. U. S. A. 102, 7315–7320 (2005)CrossRefGoogle Scholar
  29. 29.
    Flatt, P., Gautschi, J., Thacker, R., Musafija-Girt, M., Crews, P., Gerwick, W.: Identification of the cellular site of polychlorinated peptide biosynthesis in the marine sponge Dysidea (Lamellodysidea) herbacea and symbiotic cyanobacterium Oscillatoria spongeliae by CARD-FISH analysis. Mar. Biol. 147, 761–774 (2005)CrossRefGoogle Scholar
  30. 30.
    Via, C.W., Glukhov, E., Costa, S., Zimba, P.V., Moeller, P.D.R., Gerwick, W.H., Bertin, M.J.: The metabolome of a cyanobacterial bloom visualized by MS/MS-based molecular networking reveals new neurotoxic smenamide analogs (C, D, and E). Front. Chem. 6, 316 (2018)CrossRefGoogle Scholar
  31. 31.
    Andrianasolo, E.H., Gross, H., Goeger, D., Musafija-Girt, M., McPhail, K., Leal, R.M., Mooberry, S.L., Gerwick, W.H.: Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 7, 1375–1378 (2005)CrossRefGoogle Scholar
  32. 32.
    Ueoka, R., Uria, A.R., Reiter, S., Mori, T., Karbaum, P., Peters, E.E., Helfrich, E.J.N., Morinaka, B.I., Gugger, M., Takeyama, H., Matsunaga, S., Piel, J.: Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat. Chem. Biol. 11, 705 (2015)CrossRefGoogle Scholar
  33. 33.
    Hertweck, C.: Decoding and reprogramming complex polyketide assembly lines: prospects for synthetic biology. Trends Biochem. Sci. 40, 189–199 (2015)CrossRefGoogle Scholar
  34. 34.
    van der Hooft, J.J.J., Wandy, J., Barrett, M.P., Burgess, K.E.V., Rogers, S.: Topic modeling for untargeted substructure exploration in metabolomics. Proc. Natl. Acad. Sci. U. S. A. 113, 13738 (2016)CrossRefGoogle Scholar
  35. 35.
    van der Hooft, J.J.J., Wandy, J., Young, F., Padmanabhan, S., Gerasimidis, K., Burgess, K.E.V., Barrett, M.P., Rogers, S.: Unsupervised discovery and comparison of structural families across multiple samples in untargeted metabolomics. Anal. Chem. 89, 7569–7577 (2017)CrossRefGoogle Scholar
  36. 36.
    Wandy, J., Zhu, Y., van der Hooft, J.J.J., Daly, R., Barrett, M.P., Rogers, S.: Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics. 34, 317–318 (2017)CrossRefGoogle Scholar
  37. 37.
    Bialonska, D., Zjawiony, J.K.: Aplysinopsins - marine indole alkaloids: chemistry, bioactivity and ecological significance. Mar. Drugs. 7, 166 (2009)CrossRefGoogle Scholar
  38. 38.
    Dai, J., Jimenez, J.I., Kelly, M., Barnes, S., Lorenzo, P., Williams, P.: Dictazolines A and B, bisspiroimidazolidinones from the marine sponge Smenospongia cerebriformis. J. Nat. Prod. 71, 1287–1290 (2008)CrossRefGoogle Scholar
  39. 39.
    Iwagawa, T., Miyazaki, M., Okamura, H., Nakatani, M., Doe, M., Takemura, K.: Three novel bis (indole) alkaloids from a stony coral, Tubastraea sp. Tetrahedron Lett. 44, 2533–2535 (2003)CrossRefGoogle Scholar
  40. 40.
    Smith, T.E.: Biogenetic relationships of bioactive sponge merotriterpenoids. Mar. Drugs. 15, 285 (2017)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Engineered Biosystems Building, School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Smithsonian Marine StationSmithsonian InstitutionFort PierceUSA
  3. 3.Department of BiologyCollege of CharlestonCharlestonUSA
  4. 4.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  5. 5.School of Biological SciencesGeorgia Institute of TechnologyAtlantaUSA
  6. 6.Center for Microbial Dynamics and InfectionSchool of Biological Sciences Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations