Advertisement

Structural Study of Analogues of Titan’s Haze by Trapped Ion Mobility Coupled with a Fourier Transform Ion Cyclotron Mass Spectrometer

  • Christopher P. RügerEmail author
  • Julien Maillard
  • Johann Le Maître
  • Mark Ridgeway
  • Christopher J. Thompson
  • Isabelle Schmitz-Afonso
  • Thomas Gautier
  • Nathalie Carrasco
  • Melvin A. Park
  • Pierre Giusti
  • Carlos Afonso
Short Communication

Abstract

The aerosols present in the atmosphere of the Saturn’s moon Titan are of particular planetary science interest and several spacecraft missions are already allowed to gather spectroscopic data. Titan haze’s analogs, so-called tholins, were produced on earth to push forward the comprehension of their formation and properties. In this study, this highly complex mixture was analyzed here for the first time by trapped ion mobility spectrometry coupled to ultra-high resolution mass spectrometry (FTICR MS). Electrospray ionization revealed the characteristic CHNx-class components, with CHN5–6 and DBE 6–7 most abundant. Deploying specialized visualization, enabled by accurate mass measurements and elemental composition assignments, the adapted Kendrick mass defect analysis highlights the C2H3N homolog series, whereas the nitrogen-modified van Krevelen diagram exhibits a clear trend towards H/C 1.5 and N/C 0.5. More interestingly, the representation of m/z versus collision cross section (CCS) allowed hypothesizing a ramified N-PAH structural motif. State-of-the-art IMS is currently not able to resolve the isomeric continuum of ultra-complex mixtures; thus, peak parameters other than the CCS value are explored. As such, analyzing the mobility peak width versus m/z shows a linear increase in isomeric diversity between m/z 170 and 350 and a near plateau in diversity at higher m/z for the N-PAH-like structure. Due to the high complexity of the sample, these structural insights are only to be revealed by TIMS-FTICR MS.

Keywords

Tholins Ion mobility spectrometry Ultra-high resolution mass spectrometry Complex mixture Electrospray 

Notes

Acknowledgements

Thanks to the EU for funding via the ERC PRIMCHEM project (No. 636829). This work was supported at Chimie Organique Bioorganique Réactivité Analyse (COBRA) laboratory by the European Regional Development Fund (ERDF) N°31708, the Région Normandie, and the Laboratoire d’Excellence (LabEx) Synthèse Organique (SynOrg) (ANR-11-LABX-0029).

Supplementary material

13361_2019_2205_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1448 kb)

References

  1. 1.
    Israël, G., Szopa, C., Raulin, F., Cabane, M., Niemann, H.B., Atreya, S.K., Bauer, S.J., Brun, J.-F., Chassefière, E., Coll, P., Condé, E., Coscia, D., Hauchecorne, A., Millian, P., Nguyen, M.-J., Owen, T., Riedler, W., Samuelson, R.E., Siguier, J.-M., Steller, M., Sternberg, R., Vidal-Madjar, C.: Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature. 438, 796–799 (2005)Google Scholar
  2. 2.
    Vinatier, S., Bézard, B., de Kok, R., Anderson, C.M., Samuelson, R.E., Nixon, C.A., Mamoutkine, A., Carlson, R.C., Jennings, D.E., Guandique, E.A.: Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission II: aerosol extinction profiles in the 600–1420cm−1 spectral range. Icarus. 210, 852–866 (2010)Google Scholar
  3. 3.
    Szopa, C., Cernogora, G., Boufendi, L., Correia, J.J., Coll, P.: PAMPRE: a dusty plasma experiment for Titan’s tholins production and study. Planet. Space Sci. 54, 394–404 (2006)Google Scholar
  4. 4.
    Gautier, T., Carrasco, N., Schmitz-Afonso, I., Touboul, D., Szopa, C., Buch, A., Pernot, P.: Nitrogen incorporation in Titan’s tholins inferred by high resolution orbitrap mass spectrometry and gas chromatography–mass spectrometry. Earth Planet. Sci. Lett. 404, 33–42 (2014)Google Scholar
  5. 5.
    Gautier, T., Schmitz-Afonso, I., Touboul, D., Szopa, C., Buch, A., Carrasco, N.: Development of HPLC-Orbitrap method for identification of N-bearing molecules in complex organic material relevant to planetary environments. Icarus. 275, 259–266 (2016)Google Scholar
  6. 6.
    Somogyi, A., Oh, C.-H., Smith, M.A., Lunine, J.I.: Organic environments on Saturn’s moon, titan: simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. J. Am. Soc. Mass Spectrom. 16, 850–859 (2005)Google Scholar
  7. 7.
    Carrasco, N., Schmitz-Afonso, I., Bonnet, J.-Y., Quirico, E., Thissen, R., Dutuit, O., Bagag, A., Laprévote, O., Buch, A., Giulani, A., Adandé, G., Ouni, F., Hadamcik, E., Szopa, C., Cernogora, G.: Chemical characterization of Titan’s tholins: solubility, morphology and molecular structure revisited. J. Phys. Chem. A. 113, 11195–11203 (2009)Google Scholar
  8. 8.
    Vuitton, V., Bonnet, J.-Y., Frisari, M., Thissen, R., Quirico, E., Dutuit, O., Schmitt, B., Le Roy, L., Fray, N., Cottin, H., Sciamma-O’Brien, E., Carrasco, N., Szopa, C.: Very high resolution mass spectrometry of HCN polymers and tholins. Faraday Discuss. 147, 495–508 (2010)Google Scholar
  9. 9.
    Maillard, J., Carrasco, N., Schmitz-Afonso, I., Gautier, T., Afonso, C.: Comparison of soluble and insoluble organic matter in analogues of Titan’s aerosols. Earth Planet. Sci. Lett. 495, 185–191 (2018)Google Scholar
  10. 10.
    Maillard, J., Hupin, S., Carrasco, N., Schmitz-Afonso, I., Gautier, T., Afonso, C.: Structural elucidation of soluble organic matter: application to Titan’s haze. Geochim. Cosmochim. Acta. (2019) submittedGoogle Scholar
  11. 11.
    Fernandez-Lima, F.: Trapped ion mobility spectrometry: past, present and future trends. Int. J. Ion Mobil. Spectrom. 19, 65–67 (2016)Google Scholar
  12. 12.
    Benigni, P., Sandoval, K., Thompson, C.J., Ridgeway, M.E., Park, M.A., Gardinali, P., Fernandez-Lima, F.: Analysis of photoirradiated water accommodated fractions of crude oils using tandem TIMS and FT-ICR MS. Environ. Sci. Technol. 51, 5978–5988 (2017)Google Scholar
  13. 13.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281–294 (2014)Google Scholar
  14. 14.
    Tose, L.V., Benigni, P., Leyva, D., Sundberg, A., Ramírez, C.E., Ridgeway, M.E., Park, M.A., Romão, W., Jaffé, R., Fernandez-Lima, F.: Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 32, 1287–1295 (2018)Google Scholar
  15. 15.
    Farenc, M., Paupy, B., Marceau, S., Riches, E., Afonso, C., Giusti, P.: Effective ion mobility peak width as a new isomeric descriptor for the untargeted analysis of complex mixtures using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2476–2482 (2017)Google Scholar
  16. 16.
    Haler, J.R.N., Far, J., Aqil, A., Claereboudt, J., Tomczyk, N., Giles, K., Jérôme, C., Pauw, E. de: Multiple gas-phase conformations of a synthetic linear poly(acrylamide) polymer observed using ion mobility-mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 2492–2499 (2017)Google Scholar
  17. 17.
    de Winter, J., Lemaur, V., Ballivian, R., Chirot, F., Coulembier, O., Antoine, R., Lemoine, J., Cornil, J., Dubois, P., Dugourd, P., Gerbaux, P.: Size dependence of the folding of multiply charged sodium cationized polylactides revealed by ion mobility mass spectrometry and molecular modelling. Chem. Eur. J. 17, 9738–9745 (2011)Google Scholar
  18. 18.
    Trimpin, S., Clemmer, D.E.: Ion mobility spectrometry/mass spectrometry snapshots for assessing the molecular compositions of complex polymeric systems. Anal. Chem. 80, 9073–9083 (2008)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Christopher P. Rüger
    • 1
    Email author
  • Julien Maillard
    • 1
    • 2
  • Johann Le Maître
    • 1
    • 3
  • Mark Ridgeway
    • 4
  • Christopher J. Thompson
    • 4
  • Isabelle Schmitz-Afonso
    • 1
  • Thomas Gautier
    • 2
  • Nathalie Carrasco
    • 2
  • Melvin A. Park
    • 4
  • Pierre Giusti
    • 3
  • Carlos Afonso
    • 1
  1. 1.CNRS/Université de RouenUMR 6014 COBRAMont Saint Aignan CedexFrance
  2. 2.LATMOS/IPSL, Université Versailles St Quentin, UPMC Université Paris 06, CNRS78280 GuyancourtFrance
  3. 3.TOTAL Refining and ChemicalsTotal Research and Technologies Gonfreville76700 HarfleurFrance
  4. 4.Bruker DaltonicsBillericaUSA

Personalised recommendations