Advertisement

Sliding Window Adduct Removal Method (SWARM) for Enhanced Electrospray Ionization Mass Spectrometry Binding Data

  • Pavel I. Kitov
  • Ling Han
  • Elena N. Kitova
  • John S. KlassenEmail author
Research Article

Abstract

Electrospray ionization mass spectrometry (ESI-MS) screening of compound libraries against target proteins enables the rapid identification of ligands and measurement of the stoichiometry and affinity of the interactions. However, non-specific association of buffer or salts (added or present as impurities) to the protein ions during gas-phase ion formation can complicate the analysis of ESI-MS data acquired for mixtures of compounds with similar molecular weights. Spectral overlap of ions corresponding to free protein and protein-ligand complexes and their corresponding adducts can hinder the identification of ligands and introduce errors in the measured affinities. Here, we present a straightforward approach, called the sliding window adduct removal method (SWARM), to quantitatively correct ESI mass spectra of low-to-moderate resolution for signal overlap associated with adducts. The method relies on the statistical nature of adduct formation in ESI and the assumption that the distributions of adducts associated with a given protein (free protein and ligand-bound forms) are identical at a given charge state. Analysis of ESI mass spectra measured for protein–oligosaccharide interactions using solutions that produced either low- or high-abundance adducts provides support for this assumption. Implementation of SWARM involves the stepwise subtraction of the adduct signal associated with the detected protein–ligand complexes from the mass spectrum. This is accomplished using the adduct distribution measured for an appropriate reference species (usually free protein). To demonstrate the utility of the method, we applied SWARM to ESI-MS screening data acquired for libraries of oligosaccharides and bifunctional ligands consisting of a sulfonamide moiety linked to human glycan structures.

Graphical Abstract

Keywords

Electrospray ionization mass spectrometry Library screening Affinity Adducts 

Notes

Acknowledgements

Funding for this work was generously provided by the Alberta Glycomics Centre and the Canada Foundation for Innovation. Software to implement SWARM is available from the corresponding author upon request.

Supplementary material

13361_2019_2204_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1222 kb)

References

  1. 1.
    Kitova, E.N., El-Hawiet, A., Schnier, P.D., Klassen, J.S.: Reliable determinations of protein-ligand interactions by direct ESI-MS measurements. Are we there yet? J. Am. Soc. Mass Spectrom. 23, 431–441 (2012)CrossRefGoogle Scholar
  2. 2.
    Han, L., Shams-Ud-Doha, K., Kitova, E.N., Klassen, J.S.: Screening oligosaccharide libraries against lectins using the proxy protein electrospray ionization mass spectrometry assay. Anal. Chem. 88, 8224–8231 (2016)CrossRefGoogle Scholar
  3. 3.
    Gao, J., Cheng, X., Chen, R., Sigal, G.B., Bruce, J.E., Schwartz, B.L., Hofstadler, S.A., Anderson, G.A., Smith, R.D., Whitesides, G.M.: Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry. J. Med. Chem. 39, 1949–1955 (1996)CrossRefGoogle Scholar
  4. 4.
    Wigger, M., Eyler, J.R., Benner, S.A., Li, W., Marshall, A.G.: Fourier transform-ion cyclotron resonance mass spectrometric resolution, identification, and screening of non-covalent complexes of Hck Src homology 2 domain receptor and ligands from a 324-member peptide combinatorial library. J. Am. Soc. Mass Spectrom. 13, 1162–1169 (2002)CrossRefGoogle Scholar
  5. 5.
    Young, L.M., Saunders, J.C., Mahood, R.A., Revill, C.H., Foster, R.J., Tu, L.H., Raleigh, D.P., Radford, S.E., Ashcroft, A.E.: Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nat. Chem. 7, 73–81 (2015)CrossRefGoogle Scholar
  6. 6.
    Sun, N., Sun, J., Kitova, E.N., Klassen, J.S.: Identifying nonspecific ligand binding in electrospray ionization mass spectrometry using the reporter molecule method. J. Am. Soc. Mass Spectrom. 20, 1242–1250 (2009)CrossRefGoogle Scholar
  7. 7.
    Yao, Y., Shams-Ud-Doha, K., Daneshfar, R., Kitova, E.N., Klassen, J.S.: Quantifying protein-carbohydrate interactions using liquid sample desorption electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 26, 98–106 (2015)CrossRefGoogle Scholar
  8. 8.
    Cassou, C.A., Williams, E.R.: Desalting protein ions in native mass spectrometry using supercharging reagents. Analyst. 139, 4810–4819 (2014)CrossRefGoogle Scholar
  9. 9.
    Kebarle, P., Verkerk, U.H.: Electrospray: from ions in solution to ions in the gas phase, what we know now. Mass Spectrom. Rev. 28, 898 (2009)CrossRefGoogle Scholar
  10. 10.
    Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D., Alice, M.B.: Molecular beams of macroions. J. Chem. Phys. 49, 2240 (1968)CrossRefGoogle Scholar
  11. 11.
    Fernandez de la Mora, J.: Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Anal. Chim. Acta. 406, 93–104 (2000)CrossRefGoogle Scholar
  12. 12.
    Konermann, L.J.: Addressing a common misconception: ammonium acetate as neutral pH “buffer” for native electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 28, 1827–1835 (2017)CrossRefGoogle Scholar
  13. 13.
    Kitov, P.I., Kitova, E.K., Han, L., Li, Z., Jung, J., Rodrigues, E., Hunter, C.D., Cairo, C.W., Macauley, M.S., Klassen, J.S.: A quantitative and high-throughput mass spectrometry-based glycan library screening method. Commun. Biol. (2018) submittedGoogle Scholar
  14. 14.
    Marty, M.T., Baldwin, A.J., Marklund, E.G., Hochberg, G.K., Benesch, J.L., Robinson, C.V.: Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015)CrossRefGoogle Scholar
  15. 15.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964)CrossRefGoogle Scholar
  16. 16.
    Eilers, P.H.C.: A perfect smoother. Anal. Chem. 75, 3631–3636 (2003)CrossRefGoogle Scholar
  17. 17.
    Shams-Ud-Doha, K., Kitova, E.N., Kitov, P.I., St-Pierre, Y., Klassen, J.S.: Human milk oligosaccharide specificities of human galectins. Comparison of electrospray ionization mass spectrometry and glycan microarray screening results. Anal. Chem. 89, 4914–4921 (2017)CrossRefGoogle Scholar
  18. 18.
    Han, L., Kitova, E.N., Tan. M., Jiang, X., Pluvinage, B., Boraston, A.B., Klassen, J.S.: Affinities of human histo-blood group antigens for norovirus capsid protein complexes. Glycobiology 25, 170–180 (2015) Google Scholar
  19. 19.
    Mazumdar, P.A., Kumaran, D., Swaminathan, S., Das, A.K.: A novel acetate-bound complex of human carbonic anhydrase II. Acta. Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 163–166 (2008)CrossRefGoogle Scholar
  20. 20.
    Bertini, I., Luchinat, C., Scozzafava, A.: Binding affinity of bicarboxylate ions for cobalt (II) bovine carbonic anhydrase. Bioinorg. Chem. 9, 93–100 (1978)CrossRefGoogle Scholar
  21. 21.
    Zhang, Z., Marshall, A.G.: A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998)CrossRefGoogle Scholar
  22. 22.
    Mann, M., Meng, C.K., Fenn, J.B.: Interpreting mass spectra of multiply charged ions. Anal. Chem. 61, 1702–1708 (1989)CrossRefGoogle Scholar
  23. 23.
    Reid, D.J., Diesing, J.M., Miller, M.A., Perry, S.M., Wales, J.A., Montfort, W.R., Marty, M.T.: MetaUniDec: high-throughput deconvolution of native mass spectra. J. Am. Soc. Mass Spectrom. 30, 118–127 (2019)CrossRefGoogle Scholar
  24. 24.
    Lu, J., Trnka, M.J., Roh, S.H., Robinson, P.J., Shiau, C., Fujimori, D.G., Chiu, W., Burlingame, A.L., Guan, S.: Improved peak detection and deconvolution of native electrospray mass spectra from large protein complexes. J. Am. Soc. Mass Spectrom. 26, 2141–2151 (2015)CrossRefGoogle Scholar
  25. 25.
    Cleary, S.P., Thompson, A.M., Prell, J.S.: Fourier analysis method for analyzing highly congested mass spectra of ion populations with repeated subunits. Anal. Chem. 88, 6205–6213 (2016)CrossRefGoogle Scholar
  26. 26.
    Cleary, S.P., Li, H., Bagal, D., Loo, J.A., Campuzano, I.D.G., Prell, J.S.: Extracting charge and mass information from highly congested mass spectra using Fourier-domain harmonics. J. Am. Soc. Mass Spectrom. (2018) Google Scholar
  27. 27.
    Bern, M., Caval, T., Kil, Y.J., Tang, W., Becker, C., Carlson, E., Kletter, D., Sen, K.I., Galy, N., Hagemans, D., Franc, V., Heck, A.J.R.: Parsimonious charge deconvolution for native mass spectrometry. J. Proteome Res. 17, 1216–1226 (2018)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Alberta Glycomics Centre and Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations