Selenoproteome Identification in Inflamed Murine Primary Bone Marrow-Derived Macrophages by Nano-LC Orbitrap Fusion Tribrid Mass Spectrometry

  • Arvind M. Korwar
  • Ashley E. Shay
  • Venkatesha Basrur
  • Kevin Conlon
  • K. Sandeep PrabhuEmail author
Research Article


Selenium (Se) functions as a cellular redox gatekeeper through its incorporation into proteins as the 21st amino acid, selenocysteine (Sec). Supplementation of macrophages with exogenous Se (as sodium selenite) downregulates inflammation and intracellular oxidative stress by effectively restoring redox homeostasis upon challenge with bacterial endotoxin lipopolysaccharide (LPS). Here, we examined the use of a standard Tandem Mass Tag (TMT)–labeling mass spectrometry-based proteomic workflow to quantitate and examine temporal regulation of selenoproteins in such inflamed cells. Se-deficient murine primary bone marrow–derived macrophages (BMDMs) exposed to LPS in the presence or absence of selenite treatment for various time periods (0–20 h) were used to analyze the selenoproteome expression using isobaric labeling and shotgun proteomic workflow. To overcome the challenge of identification of Sec peptides, we used the identification of non-Sec containing peptides downstream of Sec as a reliable evidence of ribosome readthrough indicating efficient decoding of Sec codon. Results indicated a temporal regulation of the selenoproteome with a general increase in their expression in inflamed cells in a Se-dependent manner. Selenow, Gpx1, Msrb1, and Selenom were highly upregulated upon stimulation with LPS when compared to other selenoproteins. Interestingly, Selenow appeared to be one amongst the highly regulated selenoproteins in macrophages that was previously thought to be mainly restricted to myocytes. Collectively, TMT-labeling method of non-Sec peptides offers a reliable method to quantitate and study temporal regulation of selenoproteins; however, further optimization to include Sec-peptides could make this strategy more robust and sensitive compared to other semi-quantitative or qualitative methods.

Graphical Abstract


Lipopolysaccharide Inflammation Resolution Proteomics Redox 



This work was supported, in part, by grants from the National Institutes of Health- NIDDK and Office of Dietary Supplements R01 DK077152 (KSP) and USDA-NIFA Hatch project numbers PENO #4605; Accession # 1010021 (KSP), and seed funds from the Penn State Cancer Institute. We thank members of the Prabhu laboratory for their timely help and suggestions.

Supplementary material

13361_2019_2192_MOESM1_ESM.pdf (6.3 mb)
Figure S1 (PDF 6461 kb)
13361_2019_2192_MOESM2_ESM.pdf (216 kb)
Figure S2 (PDF 215 kb)
13361_2019_2192_MOESM3_ESM.pdf (62 kb)
Table S1 (PDF 62 kb)
13361_2019_2192_MOESM4_ESM.pdf (110 kb)
Table S2 (PDF 109 kb)
13361_2019_2192_MOESM5_ESM.pdf (76 kb)
Table S3 (PDF 76 kb)


  1. 1.
    Arner, E.S.: Selenoproteins-what unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res. 316, 1296–1303 (2010)CrossRefGoogle Scholar
  2. 2.
    Brigelius-Flohe, R., Arner, E.S.J.: Selenium and selenoproteins in (redox) signaling, diseases, and animal models-200 year anniversary issue. Free Radic. Biol. Med. 127, 1–2 (2018) (and articles therein)CrossRefGoogle Scholar
  3. 3.
    Kryukov, G.V., Castellano, S., Novoselov, S.V., Lobanov, A.V., Zehtab, O., Guigo, R., Gladyshev, V.N.: Characterization of mammalian selenoproteomes. Science. 300, 1439–1443 (2003)CrossRefGoogle Scholar
  4. 4.
    Misra, S., Boylan, M., Selvam, A., Spallholz, J.E., Bjornstedt, M.: Redox-active selenium compounds--from toxicity and cell death to cancer treatment. Nutrients. 7, 3536–3556 (2015)CrossRefGoogle Scholar
  5. 5.
    Diwakar, B.T., Korwar, A.M., Paulson, R.F., Prabhu, K.S.: The regulation of pathways of inflammation and resolution in immune cells and cancer stem cells by selenium. Adv. Cancer Res. 136, 153–172 (2017)CrossRefGoogle Scholar
  6. 6.
    Serhan, C.N., Chiang, N., Van Dyke, T.E.: Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. 8, 349–361 (2008)Google Scholar
  7. 7.
    Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell. 144, 646–674 (2011)CrossRefGoogle Scholar
  8. 8.
    Martinez, F.O., Gordon, S.: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Reports. 6, 13 (2014)Google Scholar
  9. 9.
    Tschopp, J., Schroder, K.: NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. 10, 210–215 (2010)Google Scholar
  10. 10.
    Nelson, S.M., Shay, A.E., James, J.L., Carlson, B.A., Urban Jr., J.F., Prabhu, K.S.: Selenoprotein expression in macrophages is critical for optimal clearance of parasitic helminth Nippostrongylus brasiliensis. J. Biol. Chem. 291, 2787–2798 (2016)CrossRefGoogle Scholar
  11. 11.
    Kliewer, S.A., Lenhard, J.M., Willson, T.M., Patel, I., Morris, D.C., Lehmann, J.M.: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 83, 813–819 (1995)CrossRefGoogle Scholar
  12. 12.
    Rossi, A., Kapahi, P., Natoli, G., Takahashi, T., Chen, Y., Karin, M., Santoro, M.G.: Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature. 403, 103–108 (2008)CrossRefGoogle Scholar
  13. 13.
    Narayan, V., Ravindra, K.C., Liao, C., Kaushal, N., Carlson, B.A., Prabhu, K.S.: Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J. Nutr. Biochem. 26, 138–145 (2015)CrossRefGoogle Scholar
  14. 14.
    Hatfield, D.L., Tsuji, P.A., Carlson, B.A., Gladyshev, V.N.: Selenium and selenocysteine: roles in cancer, health, and development. Trends Biochem. Sci. 39, 112–120 (2014)CrossRefGoogle Scholar
  15. 15.
    Aachmann, F.L., Fomenko, D.E., Soragni, A., Gladyshev, V.N., Dikiy, A.: Solution structure of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J. Biol. Chem. 285, 37036–37044 (2007)CrossRefGoogle Scholar
  16. 16.
    Whanger, P.D.: Selenoprotein expression and function-selenoprotein W. Biochim. Biophys. Acta. 1790, 1448–1452 (2007)CrossRefGoogle Scholar
  17. 17.
    Jeon, Y.H., Park, Y.H., Kwon, J.H., Lee, J.H., Kim, I.Y.: Inhibition of 14-3-3 binding to Rictor of mTORC2 for Akt phosphorylation at Ser473 is regulated by selenoprotein W. Biochim. Biophys. Acta. 1790, 1448–1452 (2007)Google Scholar
  18. 18.
    Jeon, Y.H., Park, Y.H., Lee, J.H., Hong, J.H., Kim, I.Y.: Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein. Biochim. Biophys. Acta. 1843, 1356–1364 (2014)CrossRefGoogle Scholar
  19. 19.
    Alkan, Z., Duong, F.L., Hawkes, W.C.: Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination. Biochim. Biophys. Acta. 1853, 1087–1095 (2015)CrossRefGoogle Scholar
  20. 20.
    Dikiy, A., Novoselov, S.V., Fomenko, D.E., Sengupta, A., Carlson, B.A., Cerny, R.L., Ginalski, K., Grishin, N.V., Hatfield, D.L., Gladyshev, V.N.: SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 46, 6871–6882 (2015)CrossRefGoogle Scholar
  21. 21.
    Liao, C., Hardison, R.C., Kennett, M.J., Carlson, B.A., Paulson, R.F., Prabhu, K.S.: Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood. 131, 2568–2580 (2018)CrossRefGoogle Scholar
  22. 22.
    Gandhi, U.H., Kaushal, N., Ravindra, K.C., Hegde, S., Nelson, S.M., Narayan, V., Vunta, H., Paulson, R.F., Prabhu, K.S.: Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR) gamma. J. Biol. Chem. 286, 27471–27482 (2011)CrossRefGoogle Scholar
  23. 23.
    Vunta, H., Belda, B.J., Arner, R.J., Channa Reddy, C., Vanden Heuvel, J.P., Sandeep Prabhu, K.: Selenium attenuates pro-inflammatory gene expression in macrophages. Mol. Nutr. Food Res. 52, 1316–1323 (2008)CrossRefGoogle Scholar
  24. 24.
    Yim, S.H., Tobe, R., Turanov, A.A., Carlson, B.A.: Radioactive (75) Se labeling and detection of selenoproteins. Methods Mol. Biol. 1661, 177–192 (2018)CrossRefGoogle Scholar
  25. 25.
    Bianga, J., Ballihaut, G., Pecheyran, C., Touat, Z., Preud’homme, H., Mounicou, S., Chavatte, L., Lobinski, R., Szpunar, J.J.: J. Anal. Atom Spectrom. 27, 25–32 (2012)CrossRefGoogle Scholar
  26. 26.
    Bianga, J., Touat-Hamici, Z., Bierla, K., Mounicou, S., Szpunar, J., Chavatte, L., Lobinski, R.: Speciation analysis for trace levels of selenoproteins in cultured human cells. J. Proteome. 108, 316–324 (2014)CrossRefGoogle Scholar
  27. 27.
    Sonet, J., Mounicou, S., Chavatte, L.: Detection of selenoproteins by laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS) in immobilized pH gradient (IPG) strips. Methods Mol. Biol. 1661, 205–217 (2018)CrossRefGoogle Scholar
  28. 28.
    Lopez Heras, I., Palomo, M., Madrid, Y.: Selenoproteins: the key factor in selenium essentiality. State of the art analytical techniques for selenoprotein studies. Anal. Bioanal. Chem. 400, 1717–1727 (2011)CrossRefGoogle Scholar
  29. 29.
    Ballihaut, G., Kilpatrick, L.E., Kilpatrick, E.L., Davis, W.C.: Detection and characterization of selenoproteins by tandem mass spectrometry assisted by laser ablation inductively coupled plasma mass spectrometry: application to human plasma selenoproteins. J. Anal. Atom. Spectrom. 26, 383–394 (2011)CrossRefGoogle Scholar
  30. 30.
    Ballihaut, G., Kilpatrick, L.E., Davis, W.C.: Detection, identification, and quantification of selenoproteins in a candidate human plasma standard reference material. Anal. Chem. 83, 8667–8674 (2011)CrossRefGoogle Scholar
  31. 31.
    Gao, J., Yang, F., Che, J., Han, Y., Wang, Y., Chen, N., Bak, D.W., Lai, S., Xie, X., Weerapana, E., Wang, C.: Selenium-encoded isotopic signature targeted profiling. ACS Central Sci. 4, 960–970 (2018)CrossRefGoogle Scholar
  32. 32.
    Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., Hamon, C.: Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003)CrossRefGoogle Scholar
  33. 33.
    McAlister, G.C., Nusinow, D.P., Jedrychowski, M.P., Wuhr, M., Huttlin, E.L., Erickson, B.K., Rad, R., Haas, W., Gygi, S.P.: MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014)CrossRefGoogle Scholar
  34. 34.
    Ma, S., Caprioli, R.M., Hill, K.E., Burk, R.F.: Loss of selenium from selenoproteins: conversion of selenocysteine to dehydroalanine in vitro. J. Am. Soc. Mass Spectrom. 14, 593–600 (2003)CrossRefGoogle Scholar
  35. 35.
    Guo, L., Yang, W., Huang, Q., Qiang, J., Hart, J.R., Wang, W., Hu, J., Zhu, J., Liu, N., Zhang, Y.: Selenocysteine-specific mass spectrometry reveals tissue-distinct selenoproteomes and candidate selenoproteins. Cell Chem. Biol. 25, 1380–1388 e1384 (2018)CrossRefGoogle Scholar
  36. 36.
    Palsson-McDermott, E.M., Curtis, A.M., Goel, G., Lauterbach, M.A., Sheedy, F.J., Gleeson, L.E., van den Bosch, M.W., Quinn, S.R., Domingo-Fernandez, R., Johnston, D.G., Jiang, J.K., Israelsen, W.J., Keane, J., Thomas, C., Clish, C., Vander Heiden, M., Xavier, R.J., O'Neill, L.A.: Pyruvate kinase M2 regulates Hif-1alpha activity and IL-1beta induction and is a critical determinant of the Warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015)CrossRefGoogle Scholar
  37. 37.
    Lee, B.J., Worland, P.J., Davis, J.N., Stadtman, T.C., Hatfield, D.L.: Identification of a selenocysteyl-tRNA (Ser) in mammalian cells that recognizes the nonsense codon, UGA. J. Biol. Chem. 264, 9724–9727 (1989)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  • Arvind M. Korwar
    • 1
  • Ashley E. Shay
    • 1
  • Venkatesha Basrur
    • 2
  • Kevin Conlon
    • 2
  • K. Sandeep Prabhu
    • 1
    Email author
  1. 1.Department of Veterinary and Biomedical Sciences and The Penn State Cancer InstituteThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Pathology, Proteomics Research Core Facility, Medical SchoolUniversity of MichiganAnn ArborUSA

Personalised recommendations