Ultra-High Resolution Elemental/Isotopic Mass Spectrometry (m/Δm > 1,000,000): Coupling of the Liquid Sampling-Atmospheric Pressure Glow Discharge with an Orbitrap Mass Spectrometer for Applications in Biological Chemistry and Environmental Analysis

  • Edward D. Hoegg
  • Simon Godin
  • Joanna Szpunar
  • Ryszard Lobinski
  • David W. Koppenaal
  • R. Kenneth MarcusEmail author
Short Communication


Many fundamental questions of astrophysics, biochemistry, and geology rely on the ability to accurately and precisely measure the mass and abundance of isotopes. Taken a step further, the capacity to perform such measurements on intact molecules provides insights into processes in diverse biological systems. Described here is the coupling of a combined atomic and molecular (CAM) ionization source, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma, with a commercially available ThermoScientific Fusion Lumos mass spectrometer. Demonstrated for the first time is the ionization and isotopically resolved fingerprinting of a long-postulated, but never mass-spectrometrically observed, bi-metallic complex Hg:Se-cysteine. Such a complex has been implicated as having a role in observations of Hg detoxification by selenoproteins/amino acids. Demonstrated as well is the ability to mass spectrometrically-resolve the geochronologically important isobaric 87Sr and 87Rb species (Δm ~ 0.3 mDa, mass resolution m/Δm ≈ 1,700,000). The mass difference in this case reflects the beta-decay of the 87Rb to the stable Sr isotope. These two demonstrations highlight what may be a significant change in bioinorganic and atomic mass spectrometry, with impact expected across a broad spectrum of the physical, biological, and geological sciences.

Graphical Abstract



High resolution Microplasma Orbitrap Isotope analysis Metallobiochemistry Mercury:selenoamino acid 



Funding for the collaborative project taking place at the IPREM facility in Pau, France was provided by the Environment and Energy Initiative (E2S) and the French National Research Agency (MARSS ANR 11-EQPX-0027 project). Support for the development of the LS-APGD ionization source at Clemson University was provided by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-14-1-0010; support for development of the LS-APGD ionization source at PNNL was provided by PNNL Laboratory Directed Research & Development (LDRD) funds.


  1. 1.
    Marcus, R.K., Quarles Jr., C.D., Barinaga, C.J., Carado, A.J., Koppenaal, D.W.: Liquid sampling-atmospheric pressure glow discharge ionization source for elemental mass spectrometry. Anal. Chem. 83, 2425–2429 (2011)CrossRefGoogle Scholar
  2. 2.
    Marcus, R.K., Manard, B.T., Quarles, C.D.: Liquid sampling – atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. J. Anal. At. Spectrom. 32, 704–716 (2017)CrossRefGoogle Scholar
  3. 3.
    Hoegg, E.D., Marcus, R.K., Koppenaal, D.W., Irvahn, J., Hager, G.J., Hart, G.L.: Determination of uranium isotope ratios using a liquid sampling-atmospheric pressure glow discharge/orbitrap mass spectrometer system. Rapid Commun. Mass Spectrom. 31, 1534–1540 (2017)CrossRefGoogle Scholar
  4. 4.
    Hoegg, E.D., Manard, B.T., Wylie, E.M., Mathew, K.J., Ottenfeld, C.F., Marcus, R.K.: Initial benchmarking of the liquid sampling-atmospheric pressure glow discharge-orbitrap system against traditional atomic mass spectrometry techniques for nuclear applications. J. Am. Soc. Mass Spectrom. 30, 278–288 (2018)CrossRefGoogle Scholar
  5. 5.
    Zhang, L.X., Marcus, R.K.: Mass spectra of diverse organic species utilizing the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma ionization source. J. Anal. At. Spectrom. 31, 145–151 (2016)CrossRefGoogle Scholar
  6. 6.
    Zhang, L.X., Manard, B.T., Powell, B.A., Marcus, R.K.: Preliminary assessment of potential for metal-ligand speciation in aqueous solution via the liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source: uranyl acetate. Anal. Chem. 87, 7218–7225 (2015)CrossRefGoogle Scholar
  7. 7.
    Orbitrap Fusion Lumos Tribrid Mass Spectrometer. ThermoScientific (2018)Google Scholar
  8. 8.
    Clarkson, T.W., Magos, L.: The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36, 609–662 (2006)CrossRefGoogle Scholar
  9. 9.
    Parizek, J., Ostadalova, I.: Protective effect of small amounts of selenite in sublimate intoxication. Experientia. 23, 142–14+ (1967)CrossRefGoogle Scholar
  10. 10.
    Tran, T.A.T., Zhou, F., Yang, W.X., Wang, M.K., Dinh, Q.T., Wang, D., Liang, D.L.: Detoxification of mercury in soil by selenite and related mechanisms. Ecotox. Environ. Safe. 159, 77–84 (2018)CrossRefGoogle Scholar
  11. 11.
    Bjorklund, G., Aaseth, J., Ajsuvakova, O.P., Nikonorov, A.A., Skalny, A.V., Skalnaya, M.G., Tinkov, A.A.: Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev. 332, 30–37 (2017)CrossRefGoogle Scholar
  12. 12.
    Ralston, N.V.C., Raymond, L.J.: Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochim. Biophys. Acta-Gen. Subj. 1862, 2405–2416 (2018)CrossRefGoogle Scholar
  13. 13.
    Gajdosechova, Z., Lawan, M.M., Urgast, D.S., Raab, A., Scheckel, K.G., Lombi, E., Kopittke, P.M., Loeschner, K., Larsen, E.H., Woods, G., et al.: In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci. Rep. 6, 11 (2016)CrossRefGoogle Scholar
  14. 14.
    Gajdosechova, Z., Mester, Z., Feldmann, J., Krupp, E.M.: The role of selenium in mercury toxicity - current analytical techniques and future trends in analysis of selenium and mercury interactions in biological matrices. Trac-Trends Anal. Chem. 104, 95–109 (2018)CrossRefGoogle Scholar
  15. 15.
    Khan, M.A.K., Wang, F.Y.: Chemical demethylation of methylmercury by selenoamino acids. Chem. Res. Toxicol. 23, 1202–1206 (2010)CrossRefGoogle Scholar
  16. 16.
    Qiaol, Y., Huang, X., Chen, B.B., He, M., Hu, B.: In vitro study on antagonism mechanism of glutathione, sodium selenite and mercuric chloride. Talanta. 171, 262–269 (2017)CrossRefGoogle Scholar
  17. 17.
    Hogeback, J., Schwarzer, M., Wehe, C.A., Sperling, M., Karst, U.: Investigating the adduct formation of organic mercury species with carbonic anhydrase and hemoglobin from human red blood cell hemolysate by means of LC/ESI-TOF-MS and LC/ICP-MS. Metallomics. 8, 101–107 (2016)CrossRefGoogle Scholar
  18. 18.
    Bentley, R.A.: Strontium isotopes from the earth to the archaeological skeleton: a review. J. Archaeol. Method Theory. 13, 135–187 (2006)CrossRefGoogle Scholar
  19. 19.
    Lin, J., Liu, Y.S., Chen, H.H., Zhou, L., Hu, Z.C., Gao, S.: Review of high-precision Sr isotope analyses of low-Sr geological samples. J. Earth Sci. 26, 763–774 (2015)CrossRefGoogle Scholar
  20. 20.
    Coelho, I., Castanheira, I., Bordado, J.M., Donard, O., Silva, J.A.L.: Recent developments and trends in the application of strontium and its isotopes in biological related fields. Trac-Trends Anal. Chem. 90, 45–61 (2017)CrossRefGoogle Scholar
  21. 21.
    Atomic weights and isotopic composition. Physical Mass Laboratory, National Institute of Standards and Technology (2018)Google Scholar
  22. 22.
    Bolea-Fernandez, E., Balcaen, L., Resano, M., Vanhaecke, F.: Tandem ICP-mass spectrometry for Sr isotopic analysis without prior Rb/Sr separation. J. Anal. At. Spectrom. 31, 303–310 (2016)CrossRefGoogle Scholar
  23. 23.
    Koppenaal, D. W., Carado, A., Barinaga, C. J., Quarles, C. D., Marcus, R. K., Graham, A., Ray, S. J., Hieftje, G. M. High resolution plasma mass spectrometry systems. 2012 winter conference on plasma spectrochemistry. Tucson, AZ (2012)Google Scholar
  24. 24.
    Vroon, P.Z., van der Wagt, B., Koornneef, J.M., Davies, G.R.: Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS. Anal. Bioanal. Chem. 390, 465–476 (2008)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryClemson UniversityClemsonUSA
  2. 2.CNRS, Institute for Analytical & Physical Chemistry of the Environment & Materials, UPPA, IPREM, UMR 5254PauFrance
  3. 3.Pacific Northwest National LaboratoryEMSLRichlandUSA

Personalised recommendations