Determination of Gas-Phase Ion Mobility Coefficients Using Voltage Sweep Multiplexing

  • Tobias Reinecke
  • Austen L. Davis
  • Brian H. ClowersEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article


In a standard single averaged, drift tube ion mobility spectrometry (IMS) experiment, typically less than 1% of the ions are utilized, with the rest of the ions neutralizing on a closed ion gate or ion optic element. Though some efforts at lower pressures (e.g., 4 Torr) have been made to address this issue by concentrating ions prior to release into a drift cell, the ion current reaching the detector during an IMS experiment is often diminished due to this lower duty cycle. Additionally, when considering the temporal nature of the drift tube IMS experiment and the trajectory of IMS towards higher resolution separations and lower duty cycles, increased detector sampling rates are another factor also which further necessitates new modes of conducting the IMS experiment. Placing this trend in context with ion mobility-mass spectrometry instruments (IM-MS), there are numerous types of mass spectrometers that are simply incompatible with the single averaged ion mobility spectrometry experiments due to timing incompatibilities (i.e., ion traps are an order of magnitude slower than the IMS experiment). However, by utilizing a dual gate ion mobility spectrometer for ion multiplexing, ion utilization efficiency can be significantly increased while creating a measurement signal that can be recorded at low sampling rates. In this work, we present the fundamental theory and first results from proof-of-concept measurements using a new type of ion multiplexing that relies on changing the electric field within the drift cell during the course of an experiment while simultaneously opening the ion gates at a constant frequency. For brevity, this mode is termed voltage sweep multiplexing (VSM). Key variables for this type of experiment are discussed and verified with measurements from traditional signal averaged experiments.

Graphical Abstract



Ion mobility spectrometry Multiplexing Gas-phase ion separations Ion mobility fundamentals 



TR and ALD were supported in part by the DTRA Basic Research Program (HDTRA1-14-1-0023). Additional support was provided through the National Science Foundation (CHE-1506672).


  1. 1.
    Paglia, G., Williams, J.P., Menikarachchi, L., Thompson, J.W., Tyldesley-Worster, R., Halldórsson, S., Rolfsson, O., Moseley, A., Grant, D., Langridge, J., Palsson, B.O., Astarita, G.: Ion mobility derived collision cross sections to support metabolomics applications. Anal. Chem. 86, 3985–3993 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dwivedi, P., Wu, P., Klopsch, S.J., Puzon, G.J., Xun, L., Hill, H.H.: Metabolic profiling by ion mobility mass spectrometry (IMMS). Metabolomics. 4, 63–80 (2007)CrossRefGoogle Scholar
  3. 3.
    Dear, G.J., Munoz-Muriedas, J., Beaumont, C., Roberts, A., Kirk, J., Williams, J.P., Campuzano, I.: Sites of metabolic substitution: investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Commun. Mass Spectrom. 24, 3157–3162 (2010)CrossRefPubMedGoogle Scholar
  4. 4.
    Kliman, M., May, J.C., McLean, J.A.: Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta. 1811, 935–945 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Morrison, K.A., Clowers, B.H.: Contemporary glycomic approaches using ion mobility-mass spectrometry. Curr. Opin. Chem. Biol. 42, 119–129 (2018)CrossRefPubMedGoogle Scholar
  6. 6.
    Nagy, G., Attah, I.K., Garimella, S.V.B., Tang, K., Ibrahim, Y.M., Baker, E.S., Smith, R.D.: Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations. Chem. Commun. 54, 11701–11704 (2018)CrossRefGoogle Scholar
  7. 7.
    Zheng, X., Zhang, X., Schocker, N.S., Renslow, R.S., Orton, D.J., Khamsi, J., Ashmus, R.A., Almeida, I.C., Tang, K., Costello, C.E., Smith, R.D., Michael, K., Baker, E.S.: Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Anal. Bioanal. Chem. 409, 467–476 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huang, Y., Dodds, E.D.: Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius. Anal. Chem. 85, 9728–9735 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fasciotti, M., Lalli, P.M., Klitzke, C.F., Corilo, Y.E., Pudenzi, M.A., Pereira, R.C.L., Bastos, W., Daroda, R.J., Eberlin, M.N.: Petroleomics by traveling wave ion mobility–mass spectrometry using CO2 as a drift gas. Energy Fuel. 27, 7277–7286 (2013)CrossRefGoogle Scholar
  10. 10.
    Valentine, S.J., Plasencia, M.D., Liu, X., Krishnan, M., Naylor, S., Udseth, H.R., Smith, R.D., Clemmer, D.E.: Toward plasma proteome profiling with ion mobility-mass spectrometry. J. Proteome Res. 5, 2977–2984 (2006)CrossRefPubMedGoogle Scholar
  11. 11.
    Helm, D., Vissers, J.P.C., Hughes, C.J., Hahne, H., Ruprecht, B., Pachl, F., Grzyb, A., Richardson, K., Wildgoose, J., Maier, S.K., Marx, H., Wilhelm, M., Becher, I., Lemeer, S., Bantscheff, M., Langridge, J.I., Kuster, B.: Ion mobility tandem mass spectrometry enhances performance of bottom-up proteomics. Mol. Cell. Proteomics. 13, 3709–3715 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Crowell, K.L., Slysz, G.W., Baker, E.S., LaMarche, B.L., Monroe, M.E., Ibrahim, Y.M., Payne, S.H., Anderson, G.A., Smith, R.D.: LC-IMS-MS feature finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets. Bioinformatics. 29, 2804–2805 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Burnum-Johnson, K.E., Nie, S., Casey, C.P., Monroe, M.E., Orton, D.J., Ibrahim, Y.M., Gritsenko, M.A., Clauss, T.R.W., Shukla, A.K., Moore, R.J., Purvine, S.O., Shi, T., Qian, W., Liu, T., Baker, E.S., Smith, R.D.: Simultaneous proteomic discovery and targeted monitoring using liquid chromatography, ion mobility spectrometry, and mass spectrometry. Mol. Cell. Proteomics. 15, 3694–3705 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    May, J.C., McLean, J.A.: Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal. Chem. 87, 1422–1436 (2015)CrossRefPubMedGoogle Scholar
  15. 15.
    Clowers, B.H., Ibrahim, Y.M., Prior, D.C., Danielson, W.F., Belov, M.E., Smith, R.D.: Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal. Chem. 80, 612–623 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ibrahim, Y.M., Garimella, S.V.B., Tolmachev, A.V., Baker, E.S., Smith, R.D.: Improving ion mobility measurement sensitivity by utilizing helium in an ion funnel trap. Anal. Chem. 86, 5295–5299 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoaglund, C.S., Valentine, S.J., Clemmer, D.E.: An ion trap interface for ESI−ion mobility experiments. Anal. Chem. 69, 4156–4161 (1997)CrossRefGoogle Scholar
  18. 18.
    Reinecke, T., Clowers, B.H.: Implementation of a flexible, open-source platform for ion mobility spectrometry. HardwareX. 4, e00030 (2018)CrossRefGoogle Scholar
  19. 19.
    Clowers, B.H., Siems, W.F., Hill, H.H., Massick, S.M.: Hadamard transform ion mobility spectrometry. Anal. Chem. 78, 44–51 (2006)CrossRefPubMedGoogle Scholar
  20. 20.
    Clowers, B.H., Belov, M.E., Prior, D.C., Danielson 3rd, W.F., Ibrahim, Y., Smith, R.D.: Pseudorandom sequence modifications for ion mobility orthogonal time-of-flight mass spectrometry. Anal. Chem. 80, 2464–2473 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Szumlas, A.W., Ray, S.J., Hieftje, G.M.: Hadamard transform ion mobility spectrometry. Anal. Chem. 78, 4474–4481 (2006)CrossRefPubMedGoogle Scholar
  22. 22.
    Knorr, F.J., Eatherton, R.L., Siems, W.F., Hill Jr., H.H.: Fourier transform ion mobility spectrometry. Anal. Chem. 57, 402–406 (1985)CrossRefPubMedGoogle Scholar
  23. 23.
    Morrison, K.A., Siems, W.F., Clowers, B.H.: Augmenting ion trap mass spectrometers using a frequency modulated drift tube ion mobility spectrometer. Anal. Chem. 88, 3121–3129 (2016)CrossRefPubMedGoogle Scholar
  24. 24.
    Poltash, M.L., McCabe, J.W., Shirzadeh, M., Laganowsky, A., Clowers, B.H., Russell, D.H.: Fourier transform-ion mobility-Orbitrap mass spectrometer: a next-generation instrument for native mass spectrometry. Anal. Chem. 90, 10472–10478 (2018)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Davis, A.L., Liu, W., Siems, W.F., Clowers, B.H.: Correlation ion mobility spectrometry. Analyst. 142, 292–301 (2017)CrossRefPubMedGoogle Scholar
  26. 26.
    Tummalacherla, M., Garimella, S.V.B., Prost, S.A., Ibrahim, Y.M.: Toward artifact-free data in Hadamard transform-based double multiplexing of ion mobility-Orbitrap mass spectrometry. Analyst. 142, 1735–1745 (2017)CrossRefPubMedGoogle Scholar
  27. 27.
    Tarver, E.E.: External second gate fourier transform ion mobility spectrometry: parametric optimization for detection of weapons of mass destruction. In: IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. ProceedingsGoogle Scholar
  28. 28.
    Tarver, E.: External second gate, Fourier transform ion mobility spectrometry: parametric optimization for detection of weapons of mass destruction. Sensors. 4, 1–13 (2004)CrossRefGoogle Scholar
  29. 29.
    Puton, J., Knap, A., Siodłowski, B.: Modelling of penetration of ions through a shutter grid in ion mobility spectrometers. Sens. Actuators B Chem. 135, 116–121 (2008)CrossRefGoogle Scholar
  30. 30.
    Kurulugama, R.T., Nachtigall, F.M., Lee, S., Valentine, S.J., Clemmer, D.E.: Overtone mobility spectrometry: part 1. Experimental observations. J. Am. Soc. Mass Spectrom. 20, 729–737 (2009)CrossRefPubMedGoogle Scholar
  31. 31.
    Valentine, S.J., Stokes, S.T., Kurulugama, R.T., Nachtigall, F.M., Clemmer, D.E.: Overtone mobility spectrometry: part 2. Theoretical considerations of resolving power. J. Am. Soc. Mass Spectrom. 20, 738–750 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Zucker, S.M., Ewing, M.A., Clemmer, D.E.: Gridless overtone mobility spectrometry. Anal. Chem. 85, 10174–10179 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Davis, E.J., Clowers, B.H., Siems, W.F., Hill, H.H.: Comprehensive software suite for the operation, maintenance, and evaluation of an ion mobility spectrometer. Int. J. Ion Mobil. Spec. 14, 117 (2011)CrossRefGoogle Scholar
  34. 34.
    Davis, E.J., Williams, M.D., Siems, W.F., Hill Jr., H.H.: Voltage sweep ion mobility spectrometry. Anal. Chem. 83, 1260–1267 (2011)CrossRefPubMedGoogle Scholar
  35. 35.
    Davis, A.L., Clowers, B.H.: Leveraging spectral sparsity to realize enhanced separation of gas-phase ion populations. Int. J. Mass Spectrom. 427, 141–150 (2018)CrossRefGoogle Scholar
  36. 36.
    Hauck, B.C., Siems, W.F., Harden, C.S., McHugh, V.M., Hill Jr., H.H.: Determination of E/N influence on K values within the low field region of ion mobility spectrometry. J. Phys. Chem. A. 121, 2274–2281 (2017)CrossRefPubMedGoogle Scholar
  37. 37.
    Wyttenbach, T., Bowers, M.T.: Gas-phase conformations: the ion mobility/ion chromatography method. In: Topics in Current Chemistry. pp. 207–232 (2003)Google Scholar
  38. 38.
    Langejuergen, J., Allers, M., Oermann, J., Kirk, A., Zimmermann, S.: High kinetic energy ion mobility spectrometer: quantitative analysis of gas mixtures with ion mobility spectrometry. Anal. Chem. 86, 7023–7032 (2014)CrossRefPubMedGoogle Scholar
  39. 39.
    Du, Y., Cang, H., Wang, W., Han, F., Chen, C., Li, L., Hou, K., Li, H.: Note: design and construction of a simple and reliable printed circuit board-substrate Bradbury-Nielsen gate for ion mobility spectrometry. Rev. Sci. Instrum. 82, 086103 (2011)CrossRefPubMedGoogle Scholar
  40. 40.
    Yoon, O.K., Zuleta, I.A., Robbins, M.D., Barbula, G.K., Zare, R.N.: Simple template-based method to produce Bradbury-Nielsen gates. J. Am. Soc. Mass Spectrom. 18, 1901–1908 (2007)CrossRefPubMedGoogle Scholar
  41. 41.
    Kai, N., Jingran, G., Guangli, O., Yu, L., Quan, Y., Xiang, Q., Xiaohao, W.: A simple template-based transfer method to fabricate Bradbury–Nielsen gates with uniform tension for ion mobility spectrometry. Rev. Sci. Instrum. 85, 085107 (2014)CrossRefPubMedGoogle Scholar
  42. 42.
    Garcia, L., Saba, C., Manocchio, G., Anderson, G.A., Davis, E., Clowers, B.H.: An open source ion gate pulser for ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 20, 87–93 (2017)CrossRefGoogle Scholar
  43. 43.
    Siems, W.F., Viehland, L.A., Hill Jr., H.H.: Improved momentum-transfer theory for ion mobility. 1. Derivation of the fundamental equation. Anal. Chem. 84, 9782–9791 (2012)CrossRefPubMedGoogle Scholar
  44. 44.
    Baker, E.S., Clowers, B.H., Li, F., Tang, K., Tolmachev, A.V., Prior, D.C., Belov, M.E., Smith, R.D.: Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J. Am. Soc. Mass Spectrom. 18, 1176–1187 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    May, J.C., Morris, C.B., McLean, J.A.: Ion mobility collision cross section compendium. Anal. Chem. 89, 1032–1044 (2017)CrossRefPubMedGoogle Scholar
  46. 46.
    Kirk, A.T., Grube, D., Kobelt, T., Wendt, C., Zimmermann, S.: High-resolution high kinetic energy ion mobility spectrometer based on a low-discrimination tristate ion shutter. Anal. Chem. 90, 5603–5611 (2018)CrossRefPubMedGoogle Scholar
  47. 47.
    May, J.C., Goodwin, C.R., Lareau, N.M., Leaptrot, K.L., Morris, C.B., Kurulugama, R.T., Mordehai, A., Klein, C., Barry, W., Darland, E., Overney, G., Imatani, K., Stafford, G.C., Fjeldsted, J.C., McLean, J.A.: Conformational ordering of biomolecules in the gas phase: nitrogen collision cross sections measured on a prototype high resolution drift tube ion mobility-mass spectrometer. Anal. Chem. 86, 2107–2116 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Qian, W., Xiao, Y., Yong, R.: Spectrum leakage suppression for multi-frequency signal based on DFT. In: 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). Pp. 394–399. IEEE (2017)Google Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryWashington State UniversityPullmanUSA

Personalised recommendations