Advertisement

Effect of Basicity and Structure on the Hydration of Protonated Molecules, Proton-Bound Dimer and Cluster Formation: An Ion Mobility-Time of Flight Mass Spectrometry and Theoretical Study

  • Younes ValadbeigiEmail author
  • Vahideh Ilbeigi
  • Bartosz Michalczuk
  • Martin Sabo
  • Stefan MatejcikEmail author
Research Article

Abstract

Protonation, hydration, and cluster formation of ammonia, formaldehyde, formic acid, acetone, butanone, 2-ocatanone, 2-nonanone, acetophenone, ethanol, pyridine, and its derivatives were studied by IMS-TOFMS technique equipped with a corona discharge ion source. It was found that tendency of the protonated molecules, MH+, to participate in hydration or cluster formation depends on the basicity of M. The molecules with higher basicity were hydrated less than those with lower basicity. The mass spectra of the low basic molecules such as formaldehyde exhibited larger clusters of MnH+(H2O)n, while for compounds with high basicity such as pyridine, only MH+ and MH+M peaks were observed. The results of DFT calculations show that enthalpies of hydrations and cluster formation decrease as basicities of the molecules increases. Using comparison of mass spectra of formic acid, formaldehyde, and ethanol, effect of structure on the cluster formation was also investigated. Formation of symmetric (MH+M) and asymmetric proton-bound dimers (MH+N) was studied by ion mobility and mass spectrometry techniques. Both theoretical and experimental results show that asymmetric dimers are formed more easily between molecules (M and N) with comparable basicity. As the basicity difference between M and N increases, the enthalpy of MH+N formation decreases.

Keywords

Proton affinity Clustering Hydration Proton-bound dimer Mass spectrometry 

Notes

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 692335 and Marie skłodowska-Curie grant agreement no. 674911. This work was supported by the Slovak Research and Development Agency (contract nos. APVV-0259-12 and APVV-15-0580) and the Slovak Grant Agency for Science (contract no. VEGA 1/0787/18). YV thanks HPC Computing Facility of IKIU, Iran, for computational resources.

Supplementary material

13361_2019_2180_MOESM1_ESM.pdf (981 kb)
ESM 1 (PDF 981 kb)

References

  1. 1.
    Jacquemin, D., Zuniga, J., Requena, A., Ceron-Carrasco, J.P.: Assessing the importance of proton transfer reactions in DNA. Acc. Chem. Res. 47, 2467–2474 (2014)CrossRefGoogle Scholar
  2. 2.
    Lepine, F., Milot, S., Deziel, E., He, J., Rahme, L.G.: Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J. Am. Soc. Mass Spectrom. 15, 862–869 (2004)CrossRefGoogle Scholar
  3. 3.
    Wyttenbach, T., Bowers, M.T.: Hydration of biomolecules. Chem. Phys. Lett. 480, 1–16 (2009)CrossRefGoogle Scholar
  4. 4.
    Elm, J., Passananti, M., Kurtén, T., Vehkamäki, H.: Diamines can initiate new particle formation in the atmosphere. J. Phys. Chem. A. 121, 6155–6164 (2017)CrossRefGoogle Scholar
  5. 5.
    Blake, R.S., Monks, P.S., Ellis, A.M.: Proton-transfer reaction mass spectrometry. Chem. Rev. 19, 861–896 (2009)CrossRefGoogle Scholar
  6. 6.
    Valadbeigi, Y., Farrokhpour, H., Rouholahnejad, F., Tabrizchi, M.: Experimental and theoretical study of the kinetic of proton transfer reaction by ion mobility spectrometry. Int. J. Mass Spectrom. 369, 105–111 (2014)CrossRefGoogle Scholar
  7. 7.
    Zhang, Q., Zou, X., Liang, Q., Wang, H., Huang, C., Shen, C., Chu, Y.: Ammonia-assisted proton transfer reaction mass spectrometry for detecting triacetone triperoxide (TATP) explosive. J. Am. Soc. Mass Spectrom. (2018).  https://doi.org/10.1007/s13361-018-2108-6
  8. 8.
    Meot-Ner (Mautner), M., Scheiner, S., Yu, W.O.: Ionic hydrogen bonds in bioenergetics. 3. Proton transport in membranes, modeled by ketone/water clusters. J. Am. Chem. Soc. 120, 6980–6990 (1998)CrossRefGoogle Scholar
  9. 9.
    Konig, S., Fales, H.M.: Formation and decomposition of water clusters as observed in triple quadrupole mass spectrometer. J. Am. Soc. Mass Spectrom. 9, 814–822 (1998)CrossRefGoogle Scholar
  10. 10.
    Huang, C., Kresin, V.V., Pysanenko, A., Farnik, M.: Water cluster fragmentation probed by pickup experiments. J. Chem. Phys. 145, 104304 (2016)CrossRefGoogle Scholar
  11. 11.
    Iyengar, S.S., Petersen, M.K., Day, T.J.F., Burnham, C.J., Teige, V.E., Voth, G.A.: J. Chem. Phys. 123, 084309 (2005)CrossRefGoogle Scholar
  12. 12.
    Sunner, J., Beech, I.B., Hiroka, K.: On the distribution of ion/neutral clusters in electrospray and laser spray-a cluster division model for the electrospray processes. J. Am. Chem. Mass Spectrom. 17, 151–162 (2006)CrossRefGoogle Scholar
  13. 13.
    Postulka, J., Slavicek, P., Domaracka, A., Pysanenko, A., Farnik, M., Kocisek, J.: Proton transfer from pinene stabilizes water clusters. Phys. Chem. Chem. Phys. (2019).  https://doi.org/10.1039/C8CP05959D
  14. 14.
    Keesee, R.G., Castleman, A.W.: Thermochemical data on gas-phase ion-molecule association and clustering reactions. J. Phys. Chem. Ref. Data. 15, 1011 (1986)CrossRefGoogle Scholar
  15. 15.
    Kebarle, P.: Ion thermochemistry and solvation from gas phase ion equilibria. Annu. Rev. Phys. Chem. 28, 445–476 (1977)CrossRefGoogle Scholar
  16. 16.
    Meot-Ner (Mautner), M.: The ionic hydrogen bond and ion solvation. 1. NH+…O, NH+…N, and OH+…O bonds. Correlations with proton affinity. Deviation due to structural effects. J. Am. Chem. Soc. 106, 1257–1264 (1984)CrossRefGoogle Scholar
  17. 17.
    Valadbeigi, Y.: Proton affinities of hydrated molecules. Chem. Phys. Lett. 660, 301–306 (2016)CrossRefGoogle Scholar
  18. 18.
    Valadbeigi, Y., Ilbeigi, V., Michalczuk, B., Sabo, M., Matejcik, S.: Study of atmospheric pressure chemical ionization mechanism in corona discharge ion source with and without NH3 dopant by ion mobility spectrometry combined with mass spectrometry: a theoretical and experimental study. J. Phys. Chem. A. 123, 313–322 (2019)CrossRefGoogle Scholar
  19. 19.
    Demireva, M., O’Brien, J.T., Williams, E.R.: Water-induced folding of 1,7-diammoniumheptane. J. Am. Chem. Soc. 134, 11216–11224 (2012)CrossRefGoogle Scholar
  20. 20.
    Noh, D.H., Lee, S.J.C., Lee, J.W., Kim, H.I.: Host-guest chemistry in the gas phase: complex formation of cucurbit[6]urcil with proton-bound water dimer. J. Am. Chem. Soc. Mass Spectrom. 25, 410–421 (2014)CrossRefGoogle Scholar
  21. 21.
    Li, X., Wang, X., dell’ Arco Passaro, M., Spinell, N., Apicella, B.: Insights on clusters formation mechanism by time of flight mass spectrometry. 1. The case of ethanol-water clusters. J. Am. Chem. Mass Spectrom. 26, 1665–1675 (2015)CrossRefGoogle Scholar
  22. 22.
    Gao, B., Wyttenbach, T., Bowers, M.T.: Hydration of protonated aromatic amino acids: phenylalanine, tryptophan, and tyrosine. J. Am. Chem. Soc. 131, 4695–4701 (2009)CrossRefGoogle Scholar
  23. 23.
    Kebarle, P.: A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J. Mass Spectrom. 35, 804–817 (2000)CrossRefGoogle Scholar
  24. 24.
    Li, J., Wei, W., Nye, L.C., Schulz, P.S., Wasserscheid, P., Ivanovic-Burmazovic, I., Drewello, T.: Zwitterionic clusters with dianion core produced by electrospray ionisation of Brønsted acidic ionic liquids. Phys. Chem. Chem. Phys. 14, 5115–5121 (2012)CrossRefGoogle Scholar
  25. 25.
    Valadbeigi, Y., Farrokhpour, H., Tabrizchi, M.: Effect of hydration on the kinetics of proton-bound dimer formation: experimental and theoretical study. J. Phys. Chem. A. 118, 7663–7671 (2014)CrossRefGoogle Scholar
  26. 26.
    Jacobs, A.D., Jose, K.V.J., Horness, R., Raghavachari, K., Thielges, M.C., Clemmer, D.E.: Cooperative formation of icosahedral proline clusters from dimers. J. Am. Chem. Soc. Mass Spectrom. 29, 95–102 (2018)CrossRefGoogle Scholar
  27. 27.
    Wu, R., Marta, R.A., Martnes, J.K., Eldridge, K.R., McMahon, T.B.: Experimental and theoretical investigation of the proton-bound dimers of lysine. J. Am. Chem. Mass Spectrom. 22, 1651–1659 (2011)CrossRefGoogle Scholar
  28. 28.
    Ewing, R.G., Eiceman, G.A., Stone, J.A.: Proton-bound cluster ions in ion mobility spectrometry. Int. J. Mass Spectrom. 193, 57–68 (1999)CrossRefGoogle Scholar
  29. 29.
    Eiceman, G.A., Karpas, Z., Hill Jr., H.H.: Ion Mobility Spectrometry, 3th edn. CRC Press, Boca Raton (2014)Google Scholar
  30. 30.
    Makinen, M., Sillanpaa, M., Viitanen, A.K., Knap, A., Makela, J.M., Puton, J.: The effect of humidity on sensitivity of amine detection in ion mobility spectrometry. Talanta. 84, 116–121 (2011)CrossRefGoogle Scholar
  31. 31.
    Roscioli, J.R., McCunn, L.R., Johnson, M.A.: Quantum structure of the intermolecular proton bond. Science. 316, 249–254 (2007)CrossRefGoogle Scholar
  32. 32.
    Witt, M., Grutzmacher, H.F.: Proton bound homodimers and heterodimers of amides and amines in the gas phase. Equilibrium studies by Fourier transformation ion cyclotron resonance spectrometry. J. Am. Chem. Soc. Mass Spectrom. 13, 1273–1281 (2002)CrossRefGoogle Scholar
  33. 33.
    Tan, J.A., Kuo, J.L.: A closer examination of the coupling between ionic hydrogen bond (IHB) stretching and flanking group motions in (CH3OH)2H+: the strong isotope effects. Phys. Chem. Chem. Phys. 18, 14531–14542 (2016)CrossRefGoogle Scholar
  34. 34.
    Sabo, M., Matejcik, S.: Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal. Chem. 84, 5327–5334 (2012)CrossRefGoogle Scholar
  35. 35.
    Tirado-Rives, J., Jorgensen, W.L.: Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4, 297–306 (2008)CrossRefGoogle Scholar
  36. 36.
    Bryantsev, V.S., Diallo, M.S., van Duin, A.C.T., Goddard III, W.A.: Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput. 5, 1016–1026 (2009)CrossRefGoogle Scholar
  37. 37.
    McKechnie, S., Booth, G.H., Cohen, A.J., Cole, J.M.: On the accuracy of density functional theory and wave function methods for calculating vertical ionization energies. J. Chem. Phys. 142, 194114 (2015)CrossRefGoogle Scholar
  38. 38.
    Mardirossian, N., Head-Gordon, M.: Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115, 2315–2372 (2017)CrossRefGoogle Scholar
  39. 39.
    Valadbeigi, Y., Farrokhpour, H., Tabrizchi, M.: Theoretical study on the mechanism and kinetics of atmospheric reactions NH2OH+OOH and NH2CH3+OOH. Phys. Lett. A. 378, 777–784 (2014)CrossRefGoogle Scholar
  40. 40.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian, Inc, Wallingford (2009)Google Scholar
  41. 41.
    Sunner, J., Gordon, N., Kebarle, P.: Factors determining relative sensitivity of analytes in positive mode atmospheric pressure ionization mass spectrometry. Anal. Chem. 60, 1300–1307 (1988)CrossRefGoogle Scholar
  42. 42.
    Meot-Ner (Mautner), M.: The ionic hydrogen bond. Chem. Rev. 105, 213–284 (2005)CrossRefGoogle Scholar
  43. 43.
    Bohme, D.K., Mackay, G.I., Tanner, S.D.: An experimental study of the gas-phase kinetics of reactions with hydrated H3O+ ions (n=1-3) at 298 K. J. Am. Chem. Soc. 101, 3724–3730 (1979)CrossRefGoogle Scholar
  44. 44.
    Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data. 27, 413–656 (1998)CrossRefGoogle Scholar
  45. 45.
    Valadbeigi, Y., Farrokhpour, H.: DFT, CBS-Q, W1BD and G4MP2 calculation of the proton and electron affinities, gas phase basicities and ionization energies of saturated and unsaturated carboxylic acids (C1–C4). Int. J. Quantum Chem. 113, 1717–1721 (2013)CrossRefGoogle Scholar
  46. 46.
    Valadbeigi, Y.: Relationship between proton affinities and structures of proton-bound dimers. Eur. J. Mass Spectrom. 23, 55–63 (2017)CrossRefGoogle Scholar
  47. 47.
    Valadbeigi, Y.: Superbasicity of 1,3,5-cycloheptatriene derivatives and their proton sponges in gas phase. Chem. Phys. Lett. 689, 1–7 (2017)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceImam Khomeini International UniversityQazvinIran
  2. 2.TOF Tech. Pars CompanyIsfahanIran
  3. 3.Department of Experimental PhysicsComenius UniversityBratislavaSlovak Republic

Personalised recommendations