Cryo-LESA Mass Spectrometry—a Step Towards Truly Native Surface Sampling of Proteins

  • Bin Yan
  • Adam J. Taylor
  • Josephine BunchEmail author
Research Article


Liquid extraction surface analysis (LESA) is a powerful method for measuring proteins from surfaces. In this work, we present development and initial testing of a cryo-platform for LESA mass spectrometry of proteins. We explore the use of native sampling solutions for probing proteins directly from frozen surfaces. Our initial results from analysis of ubiquitin and hemoglobin standards showed that protein and protein complex refolding or unfolding occurs during the liquid solvent extraction stage of routine room temperature LESA. However, by employing the cryo-sampling method, the refolding or unfolding of protein ubiquitin can be dramatically reduced, while for the protein complex of hemoglobin, its native structures can be better preserved compared with room temperature sampling. This indicates that a truly native LESA sampling method of proteins is feasible. We also present detection of proteins directly from a frozen tissue section. Interestingly, slight conformational differences are observed from different regions of the frozen tissue surface. Further development of this strategy should be considered as a method for preserving, maintaining, and studying proteins in their native states, directly from tissue.

Graphical Abstract


Liquid extraction surface analysis Cryo-sampling Native mass spectrometry Protein unfolding/refolding Tissue protein MS 



This work was supported both through the NPL Strategic Research Program AIMS Higher. Professor Helen Cooper from the University of Birmingham is also greatly acknowledged for her inspiring discussions.

Supplementary material

13361_2019_2178_MOESM1_ESM.docx (614 kb)
ESM 1 (DOCX 613 kb)


  1. 1.
    Butler, J.S., Loh, S.N.: Folding and misfolding mechanisms of the p53 DNA binding domain at physiological temperature. Protein Sci. 15, 2457–2465 (2006)CrossRefGoogle Scholar
  2. 2.
    van der Kamp, M.W., Daggett, V.: Influence of pH on the human prion protein: insights into the early steps of misfolding. Biophys. J. 99, 2289–2298 (2010)CrossRefGoogle Scholar
  3. 3.
    Chaudhuri, T.K., Paul, S.: Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 273, 1331–1349 (2006)CrossRefGoogle Scholar
  4. 4.
    Fenn, J., Mann, M., Meng, C., Wong, S., Whitehouse, C.: Electrospray ionization for mass spectrometry of large biomolecules. Science. 246, 64–71 (1989)CrossRefGoogle Scholar
  5. 5.
    Koichi, T., Hiroaki, W., Yutaka, I., Satoshi, A., Yoshikazu, Y., Tamio, Y.: Protein and polymer analyses up to m/z 100,000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988)CrossRefGoogle Scholar
  6. 6.
    Lanucara, F., Holman, S.W., Gray, C.J., Eyers, C.E.: The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat. Chem. 6, 281 (2014)CrossRefGoogle Scholar
  7. 7.
    Domon, B., Aebersold, R.: Mass spectrometry and protein analysis. Science. 312, 212–217 (2006)CrossRefGoogle Scholar
  8. 8.
    Theisen, A., Yan, B., Brown, J.M., Morris, M., Bellina, B., Barran, P.E.: Use of ultraviolet photodissociation coupled with ion mobility mass spectrometry to determine structure and sequence from drift time selected peptides and proteins. Anal. Chem. 88, 9964–9971 (2016)CrossRefGoogle Scholar
  9. 9.
    van den Heuvel, R.H.H., Heck, A.J.R.: Native protein mass spectrometry: from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8, 519–526 (2004)CrossRefGoogle Scholar
  10. 10.
    Robinson, C.V., Radford, S.E.: Weighing the evidence for structure: electrospray ionization mass spectrometry of proteins. Structure. 3, 861–865 (1995)CrossRefGoogle Scholar
  11. 11.
    Loo, J.A.: Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997)CrossRefGoogle Scholar
  12. 12.
    Heck, A.J.R.: Native mass spectrometry: a bridge between interactomics and structural biology. Nat. Methods. 5, 927 (2008)CrossRefGoogle Scholar
  13. 13.
    Heck, A.J.R., van den Heuvel, R.H.H.: Investigation of intact protein complexes by mass spectrometry. Mass Spectrom. Rev. 23, 368–389 (2004)CrossRefGoogle Scholar
  14. 14.
    Takáts, Z., Wiseman, J.M., Gologan, B., Cooks, R.G.: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 306, 471–473 (2004)CrossRefGoogle Scholar
  15. 15.
    Vilmos, K.J.V.B.G.: Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45, 252–260 (2010)CrossRefGoogle Scholar
  16. 16.
    Wiseman, J.M., Ifa, D.R., Zhu, Y., Kissinger, C.B., Manicke, N.E., Kissinger, P.T., Cooks, R.G.: Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc. Natl. Acad. Sci. U. S. A. 105, 18120–18125 (2008)CrossRefGoogle Scholar
  17. 17.
    Ambrose, S., Housden, N.G., Gupta, K., Fan, J., White, P., Yen, H.-Y., Marcoux, J., Kleanthous, C., Hopper, J.T.S., Robinson, C.V.: Native desorption electrospray ionization liberates soluble and membrane protein complexes from surfaces. Angew. Chem. Int. Ed. 56, 14463–14468 (2017)CrossRefGoogle Scholar
  18. 18.
    Garza, K.Y., Feider, C.L., Klein, D.R., Rosenberg, J.A., Brodbelt, J.S., Eberlin, L.S.: Desorption electrospray ionization mass spectrometry imaging of proteins directly from biological tissue sections. Anal. Chem. 90, 7785–7789 (2018)CrossRefGoogle Scholar
  19. 19.
    Towers, M.W., Karancsi, T., Jones, E.A., Pringle, S.D., Claude, E.: Optimised desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) for the analysis of proteins/peptides directly from tissue sections on a travelling wave ion mobility Q-ToF. J. Am. Soc. Mass Spectrom. 29, 2456–2466 (2018)CrossRefGoogle Scholar
  20. 20.
    Van Berkel, G.J., Sanchez, A.D., Quirke, J.M.E.: Thin-layer chromatography and electrospray mass spectrometry coupled using a surface sampling probe. Anal. Chem. 74, 6216–6223 (2002)CrossRefGoogle Scholar
  21. 21.
    Martin, N.J., Griffiths, R.L., Edwards, R.L., Cooper, H.J.: Native liquid extraction surface analysis mass spectrometry: analysis of noncovalent protein complexes directly from dried substrates. J. Am. Soc. Mass Spectrom. 26, 1320–1327 (2015)CrossRefGoogle Scholar
  22. 22.
    Griffiths, R.L., Cooper, H.J.: Direct tissue profiling of protein complexes: toward native mass spectrometry imaging. Anal. Chem. 88, 606–609 (2016)CrossRefGoogle Scholar
  23. 23.
    Mikhailov, V.A., Griffiths, R.L., Cooper, H.J.: Liquid extraction surface analysis for native mass spectrometry: protein complexes and ligand binding. Int. J. Mass Spectrom. 420, 43–50 (2017)CrossRefGoogle Scholar
  24. 24.
    Randall, E.C., Bunch, J., Cooper, H.J.: Direct analysis of intact proteins from Escherichia coli colonies by liquid extraction surface analysis mass spectrometry. Anal. Chem. 86, 10504–10510 (2014)CrossRefGoogle Scholar
  25. 25.
    Griffiths, R.L., Sisley, E.K., Lopez-Clavijo, A.F., Simmonds, A.L., Styles, I.B., Cooper, H.J.: Native mass spectrometry imaging of intact proteins and protein complexes in thin tissue sections. Int. J. Mass Spectrom. 437, 23–29 (2019)CrossRefGoogle Scholar
  26. 26.
    Wyttenbach, T., Bowers, M.T.: Structural stability from solution to the gas phase: native solution structure of ubiquitin survives analysis in a solvent-free ion mobility–mass spectrometry environment. J. Phys. Chem. B. 115, 12266–12275 (2011)CrossRefGoogle Scholar
  27. 27.
    El-Baba, T.J., Woodall, D.W., Raab, S.A., Fuller, D.R., Laganowsky, A., Russell, D.H., Clemmer, D.E.: Melting proteins: evidence for multiple stable structures upon thermal denaturation of native ubiquitin from ion mobility spectrometry-mass spectrometry measurements. J. Am. Chem. Soc. 139, 6306–6309 (2017)CrossRefGoogle Scholar
  28. 28.
    Piana, S., Lindorff-Larsen, K., Shaw, D.E.: Atomic-level description of ubiquitin folding. Proc. Natl. Acad. Sci. U. S. A. 110, 5915–5920 (2013)CrossRefGoogle Scholar
  29. 29.
    Righetti, P.G., Caravaggio, T.: Isoelectric points and molecular weights of proteins: a table. J. Chromatogr. A. 127, 1–28 (1976)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.National Centre of Excellence in Mass Spectrometry ImagingNational Physical LaboratoryTeddingtonUK
  2. 2.Department of Surgery and CancerImperial College LondonLondonUK

Personalised recommendations