Advertisement

Space Charge Effects on Ion Mobility Spectrometry

  • Juan Fernandez de la MoraEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article

Abstract

We study the space charge limited maximal current density j″ of mobility-selected ions that can be transmitted in ion mobility spectrometry (IMS). Theory and experiments focus on differential mobility analyzers (DMAs), but are readily generalizable to other IMS devices. Repulsion between the ions in the cloud leads to beam spreading, with significant broadening once the ion number density n becomes comparable to the space charge saturation limit nsat = εoEo/(eΔ). Δ is the distance traversed by the ions in the direction of an externally imposed electric field Eo, and e is the charge on each ion. For ions of electrical mobility Z, j″ is then limited below jsat = ZEoensat = oEo2/Δ. A theory including diffusion and space charge effects is developed that reduces to Burgers’ exactly solvable equation. The theory is tested in experiments with room temperature electrosprays (ES) of 100 mM [ethyl3N+-formate] in methanol. This spray produces primarily a single ionic species at very high initial concentration n, which may be tuned above or below nsat by varying the distance from the ES emitter to the inlet slit of the DMA. Mobility-selected ion densities n > 3.108 ions/cm3 are achieved, with n~nsat, and with drastically broadened mobility peak shapes having the approximate top hat-predicted shapes. However, the largest n values approaching nsat are not quantitatively measurable because the densest sprays do not fill the outlet slit length.

Graphical Abstract

.

Keywords

Ion mobility spectrometry Differential mobility analyzer Space charge Peak broadening 

Notes

Acknowledgements

It is an honor to be part of this special issue recognizing my long admired colleagues Clemmer and Jarrold. I am grateful to Dr. Anatoly Verenchikov, Gonzalo Fernandez de la Mora, and Mario Amo-Gonzalez for their stimulus to embark in this study.

Compliance with Ethical Standards

Conflict of Interest

Following Yale rules the author declares a conflict of interest with the company SEADM, commercializing variants of the parallel plate DMA and the electrometer used in this study.

References

  1. 1.
    Clemmer, D.E., Jarrold, M.F.: Ion mobility measurements and their applications to clusters and biomolecules. J. Mass Spectrom. 32(6), 577–592 (1997)CrossRefGoogle Scholar
  2. 2.
    von Helden, G., Hsu, M.T., Kemper, P.R., Bowers, M.T.: Structures of carbon cluster ions from 3 to 60 atoms: linears to rings to fullerenes. J. Chem. Phys. 95(5), 3835 (1991)CrossRefGoogle Scholar
  3. 3.
    Jarrold, M.F., Constant, V.A.: Silicon cluster ions: evidence for a structural transition. Phys. Rev. Lett. 67(21), 2994–2997 (1991)CrossRefGoogle Scholar
  4. 4.
    Glaskin, R.S., Ewing, M.A., Clemmer, D.E.: Ion trapping for ion mobility spectrometry measurements in a cyclical drift tube. Anal. Chem. 85(15), 7003–7008 (2013)CrossRefGoogle Scholar
  5. 5.
    Hontañón, E., Kruis, F.E.: A differential mobility analyzer (DMA) for. size selection of nanoparticles at high flow rates, Aerosol Sci. & Techn. 43(1), 25–37 (2009)Google Scholar
  6. 6.
    Hontañón, E., Rouenhoff, M., Azabal, A., Ramiro, E., Kruis, F.E.: Assessment of a cylindrical and a rectangular plate differential mobility analyzer for size fractionation of nanoparticles at high-aerosol flow rates. Aerosol Sci. & Tech. 48(3), 333–339 (2014)CrossRefGoogle Scholar
  7. 7.
    Alonso, M., Kousaka, Y.: Mobility shifts in the differential mobility analyzer due to Brownian diffusion and space-charge effects. J. Aerosol Sci. 27, 1201–1225 (1996)CrossRefGoogle Scholar
  8. 8.
    Alonso, M., Alguacil, F. J. Kousaka, Y.: Space charge effects in the Differential Mobility Analyzer, J. Aerosol Sci. 31(2), 233–247 (2000)Google Scholar
  9. 9.
    Alonso, M., Alguacil, F.J., Watanabe, Y., Nomura, T., Kousaka, Y.: Experimental evidence of DMA voltage shift due to space-charge. J. Aerosol Sci. 35(5), 921–923 (2001)CrossRefGoogle Scholar
  10. 10.
    Camata, R.P., Atwater, H.A., Flagan, R.C.: Space-charge effects in nanoparticle processing using the differential mobility analyzer. J. Aerosol Sci. 32, 583–599 (2001)CrossRefGoogle Scholar
  11. 11.
    Javaheri, H., Le Blanc, Y., Thomson, B. A., de la Fernandez Mora, J., Rus, J., Sillero-Sepúlveda, J. A.: Evaluation of the analytical characteristic of a differential mobility analyzer coupled to a triple quadrupole system (DMA-MSMS), Poster 061, Annual meeting of the ASMS, June 1–-5 2008, Denver, CO. http://www.seadm.com/wp-content/uploads/2016/03/ASMS_2008_DMA_Poster_Bruce_V3.pdf. Accesses 15 Mar 2019
  12. 12.
    Rus, J., Moro, D., Sillero, J.A., Royuela, J., Casado, A., Fernández de la Mora, J.: IMS-MS studies based on coupling a differential mobility analyzer (DMA) to commercial API-MS systems. Int. J. Mass Spectrom. 298, 30–40 (2010)CrossRefGoogle Scholar
  13. 13.
    Hogan Jr., C.J., Fernández de la Mora, J.: Tandem ion mobility-mass spectrometry (IMS-MS) study of ion evaporation from ionic liquid-acetonitrile nanodrops. Phys. Chem. Chem. Phys. 11, 8079–8090 (2009)CrossRefGoogle Scholar
  14. 14.
    Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Quart. Applied Math. 9(3), 225–236 (1951)CrossRefGoogle Scholar
  15. 15.
    Fernandez de la Mora, J.: The spreading of a charged cloud, Burgers'’ equation, and nonlinear simple waves in an ideal gas, pp. 250–257 in Simplicity, Rigor and Relevance in Fluid Mechanics, a volume in honor of Amable Liñán; F.J. Higuera, J. Jiménez and J.M. Vega (Eds.), CIMNE, Barcelona, Spain 2004.Google Scholar
  16. 16.
    Fernández-García, J., Fernández de la Mora, J.: Measuring the effect of ion-induced drift-gas polarization on the electrical mobilities of multiply-charged ionic liquid nanodrops in air. J. Am. Soc. Mass Spectrom. 24, 1872–1889 (2013)CrossRefGoogle Scholar
  17. 17.
    Fernández-García, J., Fernández de la Mora, J.: Electrical mobilities of multiply-charged ionic-liquid nanodrops in air and carbon dioxide over a wide temperature range: influence of ion–induced dipole interactions. Phys. Chem. Chem. Phys. 16(38), 20,500–20,513 (2014)CrossRefGoogle Scholar
  18. 18.
    Vidal-de-Miguel, G., Macía, M., Pinacho, P., Blanco, J.: Low-sample flow secondary electrospray ionization: improving vapor ionization efficiency. Anal. Chem. 84, 8475–8479 (2012) See equation (1)CrossRefGoogle Scholar
  19. 19.
    Kelly, R.T., Page, J.S., Tang, K., Smith, R.D.: Array of chemically etched fused-silica emitters for improving the sensitivity and quantitation of electrospray ionization mass spectrometry. Anal. Chem. 79, 4192–4198 (2007)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceYale UniversityNew HavenUSA

Personalised recommendations