Advertisement

Substance P in Solution: Trans-to-Cis Configurational Changes of Penultimate Prolines Initiate Non-enzymatic Peptide Bond Cleavages

  • Christopher R. Conant
  • Daniel R. Fuller
  • Tarick J. El-Baba
  • Zhichao Zhang
  • David H. Russell
  • David E. ClemmerEmail author
Focus: Ion Mobility Spectrometry (IMS): Research Article

Abstract

We report ion mobility spectrometry and mass spectrometry studies of the non-enzymatic step-by-step degradation of substance P (subP), an 11-residue neuropeptide, with the sequence Arg1-Pro2-Lys3-Pro4-Gln5-Gln6-Phe7-Phe8-Gly9-Leu10-Met11-NH2, in ethanol. At elevated solution temperatures (55 to 75 °C), several reactions are observed, including a protonation event, i.e., [subP+2H]2+ + H+ → [subP+3H]3+, that appears to be regulated by a configurational change and two sequential bond cleavages (the Pro2-Lys3 peptide bond is cleaved to form the smaller nonapeptide Lys3-Met11-NH2 [subP(3–11)], and subsequently, subP(3–11) is cleaved at the Pro4-Gln5 peptide bond to yield the heptapeptide Gln5-Met11-NH2 [subP(5–11)]). Each of the product peptides [subP(3–11) and subP(5–11)] is accompanied by a complementary diketopiperazine (DKP): cyclo-Arg1-Pro2 (cRP) for the first cleavage, and cyclo-Lys3-Pro4 (cKP) for the second. Insight about the mechanism of degradation is obtained by comparing kinetics calculations of trial model mechanisms with experimental data. The best model of our experimental data indicates that the initial cleavage of subP is regulated by a conformational change, likely a transcis isomerization of the Arg1-Pro2 peptide bond. The subP(3–11) product has a long lifetime (t1/2 ~ 30 h at 55 °C) and appears to transition through several structural intermediates prior to dissociation, suggesting that subP(3–11) is initially formed with a Lys3-trans-Pro4 peptide bond configuration and that slow transcis isomerization regulates the second bond cleavage event as well. From these data and our model mechanisms, we obtain transition state thermochemistry ranging from ΔH = 41 to 85 kJ mol−1 and ΔS = − 43 to – 157 J mol−1 K−1 for each step in the reaction.

Graphical Abstract

Keywords

Ion mobility spectrometry-mass spectrometry Peptide conformation Dissociation kinetics Proline isomerization Penultimate proline 

Notes

Acknowledgements

This work was supported in part by grants from the National Institute of Health, R01 GM121751-03 (DEC). CRC and DRF were supported by fellowships from the Robert and Marjorie Mann Chair (DEC) and TJE was supported by a fellowship from the Indiana University College of Arts and Sciences. The work at TAMU (DHR) was funded by NSF (CHE-1707675) and NIH (P41GM121751-01A1).

References

  1. 1.
    Euler, U.V., Gaddum, J.: An unidentified depressor substance in certain tissue extracts. J. Physiol. 72, 74–87 (1931)CrossRefGoogle Scholar
  2. 2.
    Hökfelt, T., Pernow, B., Wahren, J.: Substance P: a pioneer amongst neuropeptides. J. Intern. Med. 249, 27–40 (2001)CrossRefGoogle Scholar
  3. 3.
    Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S., Erspamer, V.: The tachykinin peptide family. Pharmacol. Rev. 54, 285–322 (2002)CrossRefGoogle Scholar
  4. 4.
    Bienert, M., Klauschenz, E., Ehrlich, A., Katzwinkel, S., Niedrich, H., Tót, G., Teplán, I.: Tritium-labelling in two phenylalanine residues of norleucine11-substance P. J. Label. Compd. Radiopharm. 16, 673–679 (1979)CrossRefGoogle Scholar
  5. 5.
    Higa, T., Desiderio, D.M.: Chemical degradation of 3H-labeled substance P in Tris buffer solution. Anal. Biochem. 173, 463–468 (1988)CrossRefGoogle Scholar
  6. 6.
    Mehlis, B., Rueger, M., Becker, M., Bienert, M., Niedrich, H., Oehme, P.: Circular dichroism studies of substance P and its C-terminal sequences. Chem. Biol. Drug Des. 15, 20–28 (1980)Google Scholar
  7. 7.
    Rueger, M., Bienert, M., Mehlis, B., Gast, K., Zirwer, D., Behlke, J.: Self-association of the neuroregulatory peptide substance P and its C-terminal sequences. Biopolymers. 23, 747–758 (1984)CrossRefGoogle Scholar
  8. 8.
    Floor, E., Leeman, S.E.: Substance P sulfoxide: separation from substance P by high-pressure liquid chromatography, biological and immunological activities, and chemical reduction. Anal. Biochem. 101, 498–503 (1980)CrossRefGoogle Scholar
  9. 9.
    Kertscher, U., Bienert, M., Krause, E., Sepetov, N.F., Mehlis, B.: Spontaneous chemical degradation of substance P in the solid phase and in solution. Chem. Biol. Drug Des. 41, 207–211 (1993)Google Scholar
  10. 10.
    Fuller, D.R., Conant, C.R., El-Baba, T.J., Brown, C.J., Woodall, D.W., Russell, D.H., Clemmer, D.E.: Conformationally regulated peptide bond cleavage in bradykinin. J. Am. Chem. Soc. 140, 9357–9360 (2018)CrossRefGoogle Scholar
  11. 11.
    Shi, L., Holliday, A.E., Khanal, N., Russell, D.H., Clemmer, D.E.: Configurationally-coupled protonation of polyproline-7. J. Am. Chem. Soc. 137, 8680–8683 (2015)CrossRefGoogle Scholar
  12. 12.
    Battersby, J., Hancock, W., Canova-Davis, E., Oeswein, J., O'Onnor, B.: Diketopiperazine formation and N-terminal degradation in recombinant human growth hormone. Chem. Biol. Drug Des. 44, 215–222 (1994)Google Scholar
  13. 13.
    Gisin, B.F., Merrifield, R.: Carboxyl-catalyzed intramolecular aminolysis. Side reaction in solid-phase peptide synthesis. J. Am. Chem. Soc. 94, 3102–3106 (1972)CrossRefGoogle Scholar
  14. 14.
    Khosla, M., Smeby, R., Bumpus, F.: Failure sequence in solid-phase peptide synthesis due to the presence of an N-alkylamino acid. J. Am. Chem. Soc. 94, 4721–4724 (1972)CrossRefGoogle Scholar
  15. 15.
    Giralt, E., Eritja, R., Pedroso, E.: Diketopiperazine formation in acetamido-and nitrobenzamido-bridgedpolymeric supports. Tetrahedron Lett. 22, 3779–3782 (1981)CrossRefGoogle Scholar
  16. 16.
    Pedroso, E., Grandas, A., de las Heras, X., Eritja, R., Giralt, E.: Diketopiperazine formation in solid phase peptide synthesis using p-alkoxybenzyl ester resins and Fmoc-amino acids. Tetrahedron Lett. 27, 743–746 (1986)CrossRefGoogle Scholar
  17. 17.
    Steinberg, S., Bada, J.L.: Diketopiperazine formation during investigations of amino acid racemization in dipeptides. Science. 213, 544–545 (1981)CrossRefGoogle Scholar
  18. 18.
    Steinberg, S.M., Bada, J.L.: Peptide decomposition in the neutral pH region via the formation of diketopiperazines. J Org Chem. 48, 2295–2298 (1983)CrossRefGoogle Scholar
  19. 19.
    Sepetov, N., Krymsky, M., Ovchinnikov, M., Bespalova, Z., Isakova, O., Soucek, M., Lebl, M.: Rearrangement, racemization and decomposition of peptides in aqueous solution. Pept. Res. 4, 308–313 (1991)Google Scholar
  20. 20.
    Capasso, S., Vergara, A., Mazzarella, L.: Mechanism of 2, 5-dioxopiperazine formation. J. Am. Chem. Soc. 120, 1990–1995 (1998)CrossRefGoogle Scholar
  21. 21.
    Møss, J., Bundgaard, H.: Kinetics and mechanism of the facile cyclization of histidyl-prolineamide to cyclo (His-Pro) in aqueous solution and the competitive influence of human plasma. J. Pharm. Pharmacol. 42, 7–12 (1990)CrossRefGoogle Scholar
  22. 22.
    Ramachandran, G.T., Sasisekharan, V.: Conformation of polypeptides and proteins. Elsevier, Amsterdam (1968)CrossRefGoogle Scholar
  23. 23.
    Zimmerman, S.S., Scheraga, H.A.: Stability of cis, trans, and nonplanar peptide groups. Macromolecules. 9, 408–416 (1976)CrossRefGoogle Scholar
  24. 24.
    Jorgensen, W.L., Gao, J.: Cis-trans energy difference for the peptide bond in the gas phase and in aqueous solution. J. Am. Chem. Soc. 110, 4212–4216 (1988)CrossRefGoogle Scholar
  25. 25.
    Stewart, D.E., Sarkar, A., Wampler, J.E.: Occurrence and role of cis peptide bonds in protein structures. J. Mol. Biol. 214, 253–260 (1990)CrossRefGoogle Scholar
  26. 26.
    MacArthur, M.W., Thornton, J.M.: Influence of proline residues on protein conformation. J. Mol. Biol. 218, 397–412 (1991)CrossRefGoogle Scholar
  27. 27.
    Williamson, M.P.: The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249 (1994)CrossRefGoogle Scholar
  28. 28.
    Kay, B.K., Williamson, M.P., Sudol, M.: The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231–241 (2000)CrossRefGoogle Scholar
  29. 29.
    Counterman, A.E., Clemmer, D.E.: Cis− trans signatures of proline-containing tryptic peptides in the gas phase. Anal. Chem. 74, 1946–1951 (2002)CrossRefGoogle Scholar
  30. 30.
    Glover, M.S., Bellinger, E.P., Radivojac, P., Clemmer, D.E.: Penultimate proline in neuropeptides. Anal. Chem. 87, 8466–8472 (2015)CrossRefGoogle Scholar
  31. 31.
    Glover, M.S., Shi, L., Fuller, D.R., Arnold, R.J., Radivojac, P., Clemmer, D.E.: On the split personality of penultimate proline. J. Am. Soc. Mass Spectrom. 26, 444–452 (2015)CrossRefGoogle Scholar
  32. 32.
    Brandts, J.F., Halvorson, H.R., Brennan, M.: Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 14, 4953–4963 (1975)CrossRefGoogle Scholar
  33. 33.
    Brandts, J.F., Brennan, M., Lin, L.-N.: Unfolding and refolding occur much faster for a proline-free proteins than for most proline-containing proteins. Proc. Natl. Acad. Sci. 74, 4178–4181 (1977)CrossRefGoogle Scholar
  34. 34.
    Lin, L.-N., Brandts, J.F.: Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins. Biochemistry. 17, 4102–4110 (1978)CrossRefGoogle Scholar
  35. 35.
    Coin, I., Beyermann, M., Bienert, M.: Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat. Protoc. 2, 3247–3256 (2007)CrossRefGoogle Scholar
  36. 36.
    Mason, E.A., McDaniel, E.W.: Transport properties of ions in gases. Wiley, New York (1988)Google Scholar
  37. 37.
    Mesleh, M., Hunter, J., Shvartsburg, A., Schatz, G.C., Jarrold, M.: Structural information from ion mobility measurements: effects of the long-range potential. J. Phys. Chem. 100, 16082–16086 (1996)CrossRefGoogle Scholar
  38. 38.
    Shvartsburg, A.A., Jarrold, M.F.: An exact hard-spheres scattering model for the mobilities of polyatomic ions. Chem. Phys. Lett. 261, 86–91 (1996)CrossRefGoogle Scholar
  39. 39.
    Wyttenbach, T., von Helden, G., Batka, J.J., Carlat, D., Bowers, M.T.: Effect of the long-range potential on ion mobility measurements. J. Am. Soc. Mass Spectrom. 8, 275–282 (1997)CrossRefGoogle Scholar
  40. 40.
    Merenbloom, S.I., Koeniger, S.L., Valentine, S.J., Plasencia, M.D., Clemmer, D.E.: IMS− IMS and IMS− IMS− IMS/MS for separating peptide and protein fragment ions. Anal. Chem. 78, 2802–2809 (2006)CrossRefGoogle Scholar
  41. 41.
    Bohrer, B.C., Merenbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E.: Biomolecule analysis by ion mobility spectrometry. Annu. Rev. Anal. Chem. 1, 293–327 (2008)CrossRefGoogle Scholar
  42. 42.
    Liu, Y., Valentine, S.J., Counterman, A.E., Hoaglund, C.S., Clemmer, D.E.: Peer reviewed: injected-ion mobility analysis of biomolecules. Anal. Chem. 69, 728A–735A (1997)CrossRefGoogle Scholar
  43. 43.
    Koeniger, S.L., Merenbloom, S.I., Valentine, S.J., Jarrold, M.F., Udseth, H.R., Smith, R.D., Clemmer, D.E.: An IMS− IMS analogue of MS− MS. Anal. Chem. 78, 4161–4174 (2006)CrossRefGoogle Scholar
  44. 44.
    Hoaglund, C.S., Valentine, S.J., Sporleder, C.R., Reilly, J.P., Clemmer, D.E.: Three-dimensional ion mobility/TOFMS analysis of electrosprayed biomolecules. Anal. Chem. 70, 2236–2242 (1998)CrossRefGoogle Scholar
  45. 45.
    Pierson, N.A., Chen, L., Russell, D.H., Clemmer, D.E.: Cis–trans isomerizations of proline residues are key to bradykinin conformations. J. Am. Chem. Soc. 135, 3186–3192 (2013)CrossRefGoogle Scholar
  46. 46.
    Srebalus Barnes, C.A., Clemmer, D.E.: Assessing intrinsic side chain interactions between i and i+ 4 residues in solvent-free peptides: a combinatorial gas-phase approach. J. Phys. Chem. A. 107, 10566–10579 (2003)CrossRefGoogle Scholar
  47. 47.
    Shi, L., Holliday, A.E., Shi, H., Zhu, F., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Characterizing intermediates along the transition from polyproline I to polyproline II using ion mobility spectrometry-mass spectrometry. J. Am. Chem. Soc. 136, 12702–12711 (2014)CrossRefGoogle Scholar
  48. 48.
    Shi, L., Holliday, A.E., Glover, M.S., Ewing, M.A., Russell, D.H., Clemmer, D.E.: Ion mobility-mass spectrometry reveals the energetics of intermediates that guide polyproline folding. J. Am. Soc. Mass Spectrom. 27, 22–30 (2016)CrossRefGoogle Scholar
  49. 49.
    El-Baba, T.J., Kim, D., Rogers, D.B., Khan, F.A., Hales, D.A., Russell, D.H., Clemmer, D.E.: Long-lived intermediates in a cooperative two-state folding transition. J. Phys. Chem. B. 120, 12040–12046 (2016)CrossRefGoogle Scholar
  50. 50.
    Marcus, R.A.: Interaction of theory and experiment: examples from single molecule studies of nanoparticles. Philos. Trans. Royal Soc. A. 368, 1109–1124 (2010)Google Scholar
  51. 51.
    Silveira, J.A., Fort, K.L., Kim, D., Servage, K.A., Pierson, N.A., Clemmer, D.E., Russell, D.H.: From solution to the gas phase: stepwise dehydration and kinetic trapping of substance P reveals the origin of peptide conformations. J. Am. Chem. Soc. 135, 19147–19153 (2013)CrossRefGoogle Scholar
  52. 52.
    Pernow, B.: Inactivation of substance P by proteolysis enzymes. Acta Physiol. 34, 295–302 (1955)CrossRefGoogle Scholar
  53. 53.
    Kato, T., Nagatsu, T., Fukasawa, K., Harada, M., Nagatsu, I., Sakakibara, S.: Successive cleavage of N-terminal Arg1-Pro2 and Lys3-Pro4 from substance P but no release of Arg1-Pro2 from bradykinin, by X-Pro dipeptidyl-aminopeptidase. Biochim. Biophys. Acta (BBA)-Enzymol. 525, 417–422 (1978)CrossRefGoogle Scholar
  54. 54.
    Blumberg, S., Teichberg, V., Charli, J., Hersh, L., McKelvy, J.: Cleavage of substance P to an N-terminal tetrapeptide and a C-terminal heptapeptide by a post-proline cleaving enzyme from bovine brain. Brain Res. 192, 477–486 (1980)CrossRefGoogle Scholar
  55. 55.
    Matsas, R., Kenny, A.J., Turner, A.J.: The metabolism of neuropeptides. The hydrolysis of peptides, including enkephalins, tachykinins and their analogues, by endopeptidase-24.11. Biochem. J. 223, 433 (1984)CrossRefGoogle Scholar
  56. 56.
    Wang, L., Ahmad, S., Benter, I.F., Chow, A., Mizutani, S., Ward, P.E.: Differential processing of substance P and neurokinin a by plasma dipeptidyl (amino) peptidase IV, aminopeptidase M and angiotensin converting enzyme. Peptides. 12, 1357–1364 (1991)CrossRefGoogle Scholar
  57. 57.
    Otsuka, M., Konishi, S.: Substance P and excitatory transmitter of primary sensory neurons. Cold Spring Harb. Symp. Quant. Biol. 40, 135–143 (1976)CrossRefGoogle Scholar
  58. 58.
    Yajima, H., Kitagawa, K., Segawa, T.: Studies on peptides. XXXVIII. Structure-activity correlations in substance P. Chem. Pharm. Bull. 21, 2500–2506 (1973)CrossRefGoogle Scholar
  59. 59.
    Nakata, Y., Kusaka, Y., Yajima, H., Segawa, T.: Active uptake of substance P carboxy-terminal heptapeptide (5–11) into rat brain and rabbit spinal cord slices. J. Neurochem. 37, 1529–1534 (1981)CrossRefGoogle Scholar
  60. 60.
    Fischer, G., Heins, J., Barth, A.: The conformation around the peptide bond between the P1-and P2-positions is important for catalytic activity of some proline-specific proteases. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 742, 452–462 (1983)CrossRefGoogle Scholar
  61. 61.
    Borthwick, A.D.: 2, 5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 112, 3641–3716 (2012)CrossRefGoogle Scholar
  62. 62.
    Brownlee, M., Vlassara, H., Cerami, A.: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann. Intern. Med. 101, 527–537 (1984)CrossRefGoogle Scholar
  63. 63.
    Saido, T.C., Iwatsubo, T., Mann, D.M., Shimada, H., Ihara, Y., Kawashima, S.: Dominant and differential deposition of distinct β-amyloid peptide species, Aβ N3 (pE), in senile plaques. Neuron. 14, 457–466 (1995)CrossRefGoogle Scholar
  64. 64.
    Shimizu, T., Watanabe, A., Ogawara, M., Mori, H., Shirasawa, T.: Isoaspartate formation and neurodegeneration in Alzheimer’s disease. Arch. Biochem. Biophys. 381, 225–234 (2000)CrossRefGoogle Scholar
  65. 65.
    Truscott, R.J., Schey, K.L., Friedrich, M.G.: Old proteins in man: a field in its infancy. Trends Biochem. Sci. 41, 654–664 (2016)CrossRefGoogle Scholar
  66. 66.
    Vitek, M.P., Bhattacharya, K., Glendening, J.M., Stopa, E., Vlassara, H., Bucala, R., Manogue, K., Cerami, A.: Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc. Natl. Acad. Sci. 91, 4766–4770 (1994)CrossRefGoogle Scholar
  67. 67.
    Miyata, T., de Strihou, C.V.Y., Kurokawa, K., Baynes, J.W.: Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int. 55, 389–399 (1999)CrossRefGoogle Scholar

Copyright information

© American Society for Mass Spectrometry 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndiana UniversityBloomingtonUSA
  2. 2.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations